Distributional Semantics

Raffaella Bernardi

University of Trento
March, 2017

Linear equation

A linear equation is an algebraic equation in which each term is either a constant or the product of a constant and a single variable. E.g. a two variables x and y is $y=m x+b$, where m and b designate constants.
The origin of the name "linear" comes from the fact that the set of solutions of such an equation forms a straight line in the plane.
The general linear equation in n variables is:
$a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$
In this form, $a_{1}, a_{2}, \ldots, a_{n}$ are the coefficients, $x_{1}, x_{2}, \ldots, x_{n}$ are the variables, and b is the constant.
Such an equation will represent an ($n-1$)-dimensional hyperplane in n-dimensional Euclidean space (or in our case n-dimensional vector space)

Background: Vector and Matrix

Vector Space

A vector space is a mathematical structure formed by a collection of vectors: objects that may be added together and multiplied ("scaled") by numbers, called scalars in this context.

Vector an n-dimensional vector is represented by a column:

$$
\left[\begin{array}{c}
v_{1} \\
\cdots \\
v_{n}
\end{array}\right]
$$

or for short as $\vec{v}=\left(v_{1}, \ldots v_{n}\right)$.

Background: Vector and Matrix

Operations on vectors

Vector addition:

$$
\vec{v}+\vec{w}=\left(v_{1}+w_{1}, \ldots v_{n}+w_{n}\right)
$$

similarly for the - .
Scalar multiplication: $c \vec{v}=\left(c v_{1}, \ldots c v_{n}\right)$ where c is a "scalar".

Background: Vector and Matrix

Vector visualization

Vectors are visualized by arrows. They correspond to points (the point where the arrow ends.)

vector addition produces the diagonal of a parallelogram.

Background: Vector

Length

Length $\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}$

$$
\begin{aligned}
& \begin{array}{llllllll}
\text { d1, } & \text { d2, } & \text { d3, } & \text { d4, } & \text { d5, } & \text { d6, } & \text { d7, } & \text { d8 } \\
\hline(3, & 3, & 3, & 3, & 0, & 0, & 0, & 0)
\end{array} \\
& \text { w2 }=(1,1,1,1,0,0, \quad 0, \quad 0) \\
& \mathrm{w} 3=(0,0, \quad 0, \quad 0,1, \quad 1,1,1) \\
& \|\vec{w}\|=\sqrt{9+9+9+9}=\sqrt{36}=6 \\
& \|\vec{w} \vec{w}\|=\sqrt{1+1+1+1}=\sqrt{4}=2 \\
& \|\overrightarrow{w 3}\|=\sqrt{1+1+1+1}=\sqrt{4}=2
\end{aligned}
$$

Background: Vector

Unit vector
Unit vector is a vector whose length equals one.

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}
$$

is a unit vector in the same direction as \vec{v}. (normalized vector)

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=(\cos \alpha, \sin \alpha)
$$

Background: Vectors

Dot product or inner product

$$
\vec{v} \cdot \vec{w}=\left(v_{1} w_{1}+\ldots+v_{n} w_{n}\right)=\sum_{i=1}^{n} v_{i} w_{i}
$$

Example We have three goods to buy and sell, their prices are $\left(p_{1}, p_{2}, p_{3}\right)$ (price vector \vec{p}). The quantities we are buy or sell are $\left(q_{1}, q_{2}, q_{3}\right)$ (quantity vector \vec{q}, their values are positive when we sell and negative when we buy.) Selling the quantity q_{1} at price p_{1} brings in $q_{1} p_{1}$. The total income is the dot product:

$$
\vec{q} \cdot \vec{p}=\left(q_{1}, q_{2}, q_{3}\right) \cdot\left(p_{1}, p_{2}, p_{3}\right)=q_{1} p_{1}+q_{2} p_{2}+q_{3} p_{3}
$$

Inner product: example

$$
\begin{aligned}
& \begin{array}{lllllllll}
& \mathrm{d} 1, & \mathrm{~d} 2, & \mathrm{~d} 3, & \mathrm{~d} 4, & \mathrm{~d} 5, & \mathrm{~d} 6, & \mathrm{~d} 7, & \mathrm{~d} 8 \\
\hline \text { w1 } & 3, & 3, & 3, & 3, & 0, & 0, & 0, & 0 \\
\text { w2 } & 1, & 1, & 1, & 1, & 0, & 0, & 0, & 0
\end{array} \\
& \vec{w} \overrightarrow{1} \cdot \overrightarrow{w 2}=\sum_{i} w 1_{i} \times w 2_{i}=(3 \times 1)+(3 \times 1)+(3 \times 1)+(3 \times 1)=12
\end{aligned}
$$

Background: Vector

Cosine formula

Given δ the angle formed by the two unit vectors \vec{u} and $\overrightarrow{u^{\prime}}$, s.t.
$\vec{u}=(\cos \beta, \sin \beta)$ and $\overrightarrow{u^{\prime}}=(\cos \alpha, \sin \alpha)$

$$
\vec{u} \cdot \overrightarrow{u^{\prime}}=(\cos \beta)(\cos \alpha)+(\sin \beta)(\sin \alpha)=\cos (\beta-\alpha)=\cos \delta
$$

Given two arbitrary vectors v and w :

$$
\cos \delta=\frac{\vec{v}}{\|\vec{v}\|} \cdot \frac{\vec{w}}{\|\vec{w}\|}
$$

The bigger the angle δ, the smaller is $\cos \delta ; \cos \delta$ is never bigger than 1 (since we used unit vectors) and never less than -1. It's 0 when the angle is 90°

Cosine Similarity

Example

$$
\begin{aligned}
& \cos (\vec{x}, \vec{y})=\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|\|\vec{y}\|}=\frac{\sum_{i=1}^{n} x_{i} \times y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \times \sqrt{\sum_{i=1}^{n} y_{i}^{2}}} \\
& \begin{array}{lllllllll}
& d 1, & d 2, & d 3, & d 4, & d 5, & d 6, & d 7, & d 9 \\
\hline \mathrm{w} 1 & = & (3, & 3, & 3, & 3, & 0, & 0, & 0,
\end{array} \\
& w 2=(1, \quad 1, \quad 1, \quad 1, \quad 0, \quad 0, \quad 0, \quad 0) \\
& \mathrm{w} 3=(0, \quad 0, \quad 0, \quad 0, \quad 1, \quad 1, \quad 1, \quad 1) \\
& \cos (\vec{w} 1, \overrightarrow{w 2})=\frac{\vec{w} 1 \cdot \vec{w} 2}{\|\vec{w} 1\| \times\|\vec{w} 2\|}=\frac{(3 \times 1)+(3 \times 1)+(3 \times 1)+(3 \times 1)}{6 \times 2}=\frac{12}{12} \\
& \cos (\overrightarrow{w 1}, \overrightarrow{w 3})=\frac{\vec{w} 1 \cdot \overrightarrow{w 3}}{\|\vec{w} 1\| \times\|\vec{w} 3\|}=\frac{0}{6 \times 2}=\frac{0}{12}=0
\end{aligned}
$$

Background: Matrix

Matrices multiplication

A matrix is represented by [nr-rows x nr-columns]. Eg. for a 2×3 matrix, the notation is:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

$a_{i j} i$ stands for the row nr , and j stands for the column nr.
The multiplication of two matrices is obtained by
Rows of the 1st matrix \times columns of the $2 n d$.
A matrix with m-columns can be multiplied only by a matrix of m-rows:

$$
[\mathrm{n} \times \mathrm{m}] \times[\mathrm{m} \times \mathrm{k}]=[\mathrm{n} \times \mathrm{k}] .
$$

Background: Vector and Matrix

A matrix acts on a vector

Example of 2×2 matrix multiplied by a 2×1 matrix (viz. a vector). Take A and \vec{x} to be as below.

$$
\begin{aligned}
A \vec{x}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]= & {\left[\begin{array}{c}
(1,0) \cdot\left(x_{1}, x_{2}\right) \\
(-1,1) \cdot\left(x_{1}, x_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
1\left(x_{1}\right)+0\left(x_{2}\right) \\
-1\left(x_{1}\right)+1\left(x_{2}\right)
\end{array}\right]=} \\
& =\left[\begin{array}{l}
x_{1} \\
x_{2}-x_{1}
\end{array}\right]=\vec{b}
\end{aligned}
$$

A is a "difference matrix": the output vector \vec{b} contains differences of the input vector \vec{x} on which "the matrix has acted."

