
Computational Linguistics:
Dynamic and Statistical Parsing

Raffaella Bernardi
CIMeC, University of Trento

e-mail: bernardi@disi.unitn.it

Contents First Last Prev Next J

Contents

1 Done and to be done . 4
2 Dynamic Programming . 5

2.1 Re-known chart parsing algorithms . 6
2.2 Left-corner parsing: Using both bottom-up and top-down

approaches . 7
2.3 Left Corner of a rule . 8
2.4 Left Corner parser . 9
2.5 Example . 10
2.6 What did we improve and what not? 14
2.7 Solution . 15
2.8 Comments . 16
2.9 Left Corner Table . 17

3 Statistical Parsing . 19
3.1 Probabilistic CFG (PCFG) . 20
3.2 Example of PCFG . 21
3.3 Probability of a parse tree . 22
3.4 Example of the probability of parse trees 23

Contents First Last Prev Next J

3.5 Example of the probability of parse trees 24
3.6 Learning PCFG rule probabilities: Treebank 26
3.7 Problems with PCFGs: Poor independence assumptions . 27
3.8 Problems with PCFGs: Lack of lexical conditioning 29

4 Re-known parsers . 30
5 Parsers evaluation . 31
6 Conclusion . 32

Contents First Last Prev Next J

1. Done and to be done

We have seen:

I Top-down and bottom-up parsing

I Problem of top-down with Left recursive rules

I Back-tracking

I Depth vs. Breath first

I Overgeneration

Today, we will look into:

I Left corner parser

I Probabilistic parsers

I Demo with NLTK on left corner parser

Contents First Last Prev Next J

2. Dynamic Programming

To cope with amibiguity efficiently, several algorithms do not derive the same sub-
analysis by the same set of steps more than once.

They do so by storing derived sub-analysis in a well-formed substring table or chart
and retrieving entries from the table as needed rather than recomputing them.

This is an instance of a general technique known as dynamic programming.

Contents First Last Prev Next J

2.1. Re-known chart parsing algorithms

I CKY (Cocke-Kasami-Younger) (Kasami 1965; Younger 1967, Cocke 1970).
Bottom-up. Demo: http://martinlaz.github.io/demos/cky.html

I Earley (Earley 1968). Top-down.

I Left-corner parsing

Contents First Last Prev Next J

http://martinlaz.github.io/demos/cky.html

2.2. Left-corner parsing: Using both bottom-up and top-
down approaches

We have seen that using a pure top-down approach, we are missing some
important information provided by the words of the input string which would
help us to guide our decisions.

However, similarly, using a pure bottom-up approach, we can sometimes end
up in dead ends that could have been avoided had we used some bits of top-down
information about the category that we are trying to build.

The key idea of left-corner parsing is to combine top-down processing with
bottom-up processing in order to avoid going wrong in the ways that we are
prone to go wrong with pure top-down and pure bottom-up techniques.

Contents First Last Prev Next J

2.3. Left Corner of a rule

The left corner of a rule is the first symbol on the right hand side.

For example,

I np is the left corner of the rule s→ np vp, and

I iv is the left corner of the rule vp→ iv.

I Similarly, we can say that “vincent” is the left corner of the lexical rule pn →
vincent.

Contents First Last Prev Next J

2.4. Left Corner parser

A left-corner parser starts with a top-down prediction fixing the category that is
to be recognized, like for example s. Next, it takes a bottom-up step and then
alternates bottom-up and top-down steps until it has reached an s.

1. The bottom-up processing steps work as follows. Assuming that the parser has
just recognized a noun phrase, it will in the next step look for a rule that has
an np as its left corner.

2. Let’s say it finds s → np vp. To be able to use this rule, it has to recognize a
vp as the next thing in the input string.

3. This imposes the top-down constraint that what follows in the input string has
to be a verb phrase.

4. The left-corner parser will continue alternating bottom-up steps as described
above and top-down steps until it has managed to recognize this verb phrase,
thereby completing the sentence.

Contents First Last Prev Next J

2.5. Example

Now, let’s look at how a left-corner recognizer would proceed to recognize “vincent
died”.

1. Input: vincent died. Recognize an s. (Top-down prediction.)

2. The category of the first word of the input is pn. (Bottom-up step using a
lexical rule pn→ vincent.)

Contents First Last Prev Next J

3. Select a rule that has pn at its left corner: np→ pn. (Bottom-up step using a
phrase structure rule.)

4. Select a rule that has np at its left corner: s→ np vp (Bottom-up step.)

5. Match! The left hand side of the rule matches with , the category we are trying
to recognize.

Contents First Last Prev Next J

6. Input: died. Recognize a vp. (Top-down prediction.)

7. The category of the first word of the input is iv. (Bottom-up step.)

8. Select a rule that has iv at its left corner: vp→ iv. (Bottom-up step.)

9. Match! The left hand side of the rule matches with vp, the category we are
trying to recognize.

Contents First Last Prev Next J

Make sure that you see how the steps of bottom-up rule application alternate with
top-down predictions in this example. Also note that this is the example that we
used earlier on for illustrating how top-down parsers can go wrong and that, in
contrast to the top-down parser, the left-corner parser doesn’t have to backtrack
with this example.

Contents First Last Prev Next J

2.6. What did we improve and what not?

This left-corner recognizer handles the example that was problematic for the pure
top down approach much more efficiently.

It finds out what is the category of “vincent” and then doesn’t even try to use the
rule np → det n to analyze this part of the input. Remember that the top-down
recognizer did exactly that.

But there are no improvement on the example that was problematic for the
bottom-up approach: “the plant died”. Just like the bottom up recognizer, the
left-corner recognizer will first try to analyze “plant” as a transitive verb.

Let’s see step by step what the left-corner recognizer defined above does to process
“the plant died” given the grammar.

Try it first your self.

Contents First Last Prev Next J

2.7. Solution

Contents First Last Prev Next J

2.8. Comments

So, just like the bottom-up recognizer, the left-corner recognizer chooses the wrong
category for “plant” and needs a long time to realize its mistake.

However, the left-corner recognizer provides the information that the constituent we
are trying to build at that point is a “noun”. And nouns can never start with
a transitive verb according to the grammar we were using.

If the recognizer uses this information, it would notice immediately that the lexical
rule relating “plant” to the category transitive verb cannot lead to a parse.

Contents First Last Prev Next J

2.9. Left Corner Table

The solution is to record this information in a table.

This left-corner table stores which constituents can be at the left-corner of
which other constituents.

For the little grammar of the problematic example the left-corner table would look
as follows:

s ---> np vp

np ---> det n

vp ---> iv

vp ---> tv np

tv ---> plant

iv ---> died

det ---> the

n ---> plant

Contents First Last Prev Next J

s np, det, s
np det, np
vp iv, tv, vp
det det
n n
iv iv
tv tv

Contents First Last Prev Next J

3. Statistical Parsing

Chart parsers are good in representing ambiguities in an efficient way, but they don’t
resolve them.

A probabilisitic parser computes the probability of each internpretation and choose
the most probable interpretation.

Most modern parsers are probabilistic.

Contents First Last Prev Next J

3.1. Probabilistic CFG (PCFG)

A CFG in which its re-writing rules are associated with a probability.

A→ β [p]

where p expresses the probability that the given non-terminal A will be expanded to
the sequence β. It is the probability of a given expansion (right-hand-side) β given
the left-hand-side (LHS) A:

P (RHS|LHS)

The sum of all the possible expansions of a non-terminal must be 1.

Contents First Last Prev Next J

3.2. Example of PCFG

S -> NP VP [.80]

S -> Aux NP VP [.15]

S -> VP [.05]

NP -> Pronoun [.35]

NP -> Proper-Noun [.30]

NP -> Det Nominal [.20]

NP -> Nominal [.15]

etc..

Contents First Last Prev Next J

3.3. Probability of a parse tree

The probability of a particular parse tree T is defined as the product of the prob-
abilities of all the n rules used to expand each of the n non-terminal nodes in the
parse tree T :

P (T, S) =
n∏

i=1

P (RHS|LHS)

Contents First Last Prev Next J

3.4. Example of the probability of parse trees

“Book the dinner flight” can be parsed into two ways: (a) book a flight that serves
dinner (left) vs. “book a flight on behalf of the dinner”

Contents First Last Prev Next J

3.5. Example of the probability of parse trees

Given the grammar below, the left tree is the more probable one:

Contents First Last Prev Next J

Contents First Last Prev Next J

3.6. Learning PCFG rule probabilities: Treebank

A syntactically annotated corpus is called a treebank.

Several treebanks have been created generally by the use of a parser to automatically
parse each sentence, followed by the use of linguists to hand-correct the parses.

Treebanks are useful also to evaluate parsers.

Contents First Last Prev Next J

3.7. Problems with PCFGs: Poor independence assump-
tions

Poor independence assumptions: CFG rules impose an independence assump-
tion on probabilities, resulting in poor modeling of structural dependencies across
the parse tree.

For example, in English NPs that syntactic subjects are far more likely to be pro-
nouns vs. NPs that are syntactic objects are far more likely to be non-pronominal
(e.g. a proper nouns).

In Switchboard corpus, Subject 91% pronoun vs. 9% non-pronoun. Object 34%
pronoun vs. 66% non-pronoun; though the probabilities of the re-writing rules from
NP are:

NP → DT NN [.28]

NP → PRN [.25]

PCFGs don’t have a way to represent that the 2nd rule in subject position should
go up to .91, while in object position the probability of the 1st rule should go up to

Contents First Last Prev Next J

.66.

Contents First Last Prev Next J

3.8. Problems with PCFGs: Lack of lexical conditioning

Lack of lexical conditioning: CFG rules don’t model syntactic facts about spe-
cific words, leading to problems with subcategorization ambiguities, preposition at-
tachment, and coordinate structure ambiguities.

(a) Workers [dumped [sacks]NP [into a bin]PP]V P vs. (b) Fishermen caught [tons of
herring]NP

The preference of (a) VP attachment vs. (b) NP attachment could be required by
the affinity between the noun dumped and the preposition into that is greater
than the one between sacks and the preposition into. While tons occurs with of
more often than what caught does.

We would need a parser that deals with this lexical dependency statistics for different
verbs and prepositions.

Contents First Last Prev Next J

4. Re-known parsers

I Collins, 1999

I Charniak parser, 1997

I Stanford Parser (Klein and Manning 2003) Online demo: http://nlp.stanford.
edu:8080/parser/

I DG: Standford Dependency Parser (D. Manning et ali. 2003-2014)

I CCG: C&C parsers and the CCG bank: http://groups.inf.ed.ac.uk/ccg/
software.html

And of course with Neural Network Models:

I DG: Danqi Chen and Christopher D Manning. 2014. A Fast and Accurate
Dependency Parser using Neural Networks. Proceedings of EMNLP 2014

I CCG: Misra and Artzi, EMNLP 2016 Neural Shift Reduce Parser for CCG
Semantic Parsing

Contents First Last Prev Next J

http://nlp.stanford.edu:8080/parser/
http://nlp.stanford.edu:8080/parser/
http://groups.inf.ed.ac.uk/ccg/software.html
http://groups.inf.ed.ac.uk/ccg/software.html

5. Parsers evaluation

Readings:

“Parser Showdown at the Wall Street Corral: An Empirical Investigation of Error
Types in Parser Output”, Jonathan K. Kummerfeld, David Hall, James R. Curran,
and Dan Klein, EMNLP 2012

and

https://tech.grammarly.com/blog/the-dirty-little-secret-of-constituency-parser-evaluation

Contents First Last Prev Next J

https://tech.grammarly.com/blog/the-dirty-little-secret-of-constituency-parser-evaluation

6. Conclusion

Back to our Goals:

1. provide students with an overview of the field with focus on the syntax-semantics
interface;

2. bring students to be aware on the one hand of several lexicalized formal
grammars, [Done]

3. on the other hand of computational semantics models and be able to com-
bine some of them to capture the natural language syntax-semantics interface;
[next block of classes]

4. evaluate several applications with a special focus to Interactive Question An-
swering and Language and Vision Models;

5. make students acquainted with writing scientific reports. (Reading, Summarize,
DIscussion, Proposals) [Started]

Contents First Last Prev Next J

	Done and to be done
	Dynamic Programming
	Re-known chart parsing algorithms
	Left-corner parsing: Using both bottom-up and top-down approaches
	Left Corner of a rule
	Left Corner parser
	Example
	What did we improve and what not?
	Solution
	Comments
	Left Corner Table

	Statistical Parsing
	Probabilistic CFG (PCFG)
	Example of PCFG
	Probability of a parse tree
	Example of the probability of parse trees
	Example of the probability of parse trees
	Learning PCFG rule probabilities: Treebank
	Problems with PCFGs: Poor independence assumptions
	Problems with PCFGs: Lack of lexical conditioning

	Re-known parsers
	Parsers evaluation
	Conclusion

