
Dependency Parsing 

•  The problem: 
–  Input: Sentence x=w0, w1, …, wn with w0=root 
– Output: Dependency graph G = (V, A) for x 

where: 
•  V={0, 1, . . . , n} is the vertex set, 
•  A is the arc set, i.e., (i, j, k)∈A represents a 

dependency from wi to wj with label lk∈L 



Dependency Parsing 

•  Two main approaches: 
– Grammar-based parsing 

•  Context-free dependency grammar 
•  Constraint dependency grammar 

– Data-driven parsing 
•  Transition-based models 
•  Graph-based models 



Grammar-based Parsing 

– Context-free dependency grammar 
•  Dependency grammar as lexicalized CFG: 

– H −→ L1 · · · Lm h R1 · · · Rn 

– H ∈ VN ; h ∈ VT  ; L1 · · · Lm,R1 · · · Rn∈ VN
*
 

•  Standard context-free parsing algorithms 
– Constraint dependency grammar 

•  Parsing as constraint satisfaction: 
– Grammar consists of a set of boolean constraints, i.e. 

logical formulas that describe well-formed dependency 
graphs. 

– Constraint propagation removes candidate graphs that 
contradict constraints (eliminative parsing). 



Data-driven Parsing 

– Transition-based models 
•  Define a transition system (state machine) for 

mapping a sentence to its dependency graph. 
•  Learning: Induce a model for predicting the next 

state transition, given the transition history. 
•  Parsing: Construct the optimal transition 

sequence, given the induced model. 



Data-driven Parsing 

– Graph-based models 
•  Define a space of candidate dependency graphs 

for a sentence. 
•  Learning: Induce a model for scoring an entire 

dependency graph for a sentence. 
•  Parsing: Find the highest-scoring dependency 

graph, given the induced model. 



Pros and Cons of Dependency Parsing 

•  Four types of considerations: 
–  Complexity: faster than constituency 
–  Transparency: direct encoding of predicate-argument 

structure 
–  Word order: suitable for free word order languages 
–  Expressivity: less expressive than constituency	





Dependency Parsing 

•  Increasing interest, starting from the shared 
tasks on multilingual dependency parsing at 
CoNLL 2006 & 2007 and ending with UD	



•  Suitable to deal with languages with relatively 
free word order	



•  Influenced phrase structure parsing too (role 
of heads, bilexical relations for 
disambiguation, …)	





CoNLL Shared Tasks 
•  CoNLL 2006 – Multilingual dependency parsing: 

Arabic, Bulgarian, Chinese, Czech, Danish, Dutch, 
German, English, Japanese, Polish, Slovene, 
Spanish, Swedish, Turkish	



•  CoNLL 2007: 	


–  Multilingual track: Arabic, Basque, Catalan, 

Chinese, Czech, English, Greek, Hungarian, 
Italian, Turkish	



–  Domain Adaptation track	





Stanford Dependencies 

•  Stanford Dependencies (SDs) provide a 
representation of grammatical relations 
between words in a sentence.  

•  Designed to be easily understood and 
effectively used by people who want to 
extract textual relations (and not only by 
linguists).  

•  SDs are triplets: name of the relation, 
governor and dependent. 	





Two Options 

•  every word of the original sentence is 
present as a node with relations between 
it and other nodes  
– close parallelism to the source text words 

•  certain words are “collapsed” out of the 
representation, e.g. turning prepositions 
into relations 
– more useful for relation extraction and 

shallow language understanding tasks. 



Basic Dependency Representation 
each word in the sentence (except the head of the 

sentence) is the dependent of one other word 



Standard Dependencies  
(collapsed and propagated) 



Stanford Dependencies 

• Initially produced using hand-written 
tregex patterns over English phrase-
structure trees.  

• Later available for Chinese and other 
languages, among them Italian. 

• Now superseded by Universal 
Dependencies. 



Universal Dependencies 

•  Cross-linguistically consistent grammatical 
annotation 

•  Support multilingual research in NLP and 
linguistics 
–  Linguistic analysis within and across languages 
–  Syntactic parsing in a monolingual and cross-lingual 

setting 
–  Useful information for downstream applications 

•  Build on common usage and existing de facto 
standards 

Material taken from Nivre’s presentation at CLiC-it 2016 ���
“Reflections on Universal Dependencies” 





Universal Dependencies 
http://universaldependencies.org/  

•  Community effort (Stanford dependencies, 
Google universal POS tags, Interset interlingua 
for morphosyntactic tagsets) 

•  Universal taxonomy with language-specific 
elaboration 
–  Languages select from a universal pool of categories 
–  Allow language-specific extensions 





Dependency Relations 

•  Taxonomy of 37 universal grammatical relations 
–  Three types of structures: nominals, clauses, 

modifiers 
–  Core arguments vs. other dependents (not 

complements vs. adjuncts) 
–  Language-specific subtypes 

•  Basic and enhanced representations 
–  Basic dependencies form a (possibly non-projective) 

tree 
–  Additional dependencies in the enhanced 

representation 





1. Context Free Grammars (CFGs)	


2. Efficiency and Expressivity	


3. Features and Unification	


4. Dependency Grammars	


5. Resolving Ambiguity	


6. Treebanks and Evaluation	





5. Resolving Ambiguity 
•  Ambiguity	


•   Probabilistic Context Free Grammars	



–  Using PCFGs for disambiguation	


•  Training PCFGs	


•  Lexical preferences	





Ambiguity 

•  lexical vs. structural	


lexical  fire verb or noun?	


if it is a verb, which sense? ���

shoot, dismiss or burn? 
structural ���

I saw the man on the hill with the telescope	











Ambiguity 

•  local vs. global	


local ���

garden path sentences:���
the horse raced past the barn fell	



–  need backtracking, lookahead or parallelism 
global ���

I saw the man on the hill with the telescope	


–  need to solve the ambiguity using context	









Ambiguity 

•  Not a phenomenon limited to “pathological” 
sentences but a pervasive feature of language 	



•  Necessary to find effective ways to deal ���
with it, particularly when we aim at providing 
robust parsers.	





Probabilistic CFGs 

A PCFG is a 5-tuple G = (N, Σ, P, S, D), where 
D is a function assigning probabilities to each 
rule in P.	



P(A → β | A)	


Considering all the possible expansions of a 

non-terminal, the sum of their probabilities 
must be 1.	



Probability of a parse tree T on a sentence S:	


P(T, S) = Πn∈T p(r(n))	





A Probabilistic CFG 
S → NP VP	

 1.0	


NP → DT NN	

 0.3	


NP → NP PP	

 0.7	


NN → man	

 0.7	


NN → woman	

 0.2	


NN → telescope	

 0.1	


DT → the	

 1.0	



VP → Vi	

 0.4	


VP → Vt NP	

 0.4	


VP → VP PP	

 0.2	


Vi → laughs	

 1.0	


Vt → saw	

 1.0	


PP → P NP	

 1.0	


P → with	

 0.5	


P → in	

 0.5	



Probability of a tree with rules αi → βi:���
 Πi P(αi → βi | αi)	





Derivation 	

 	

Rules used 	

 	

Probability	


S 	

 	

 	

 	

S → NP VP	

 	

1.0	


NP VP 	

 	

NP → DT N	

 	

0.3	


DT N VP 	

 	

DT → the 	

 	

1.0	


the NP VP 	

 	

N → man 	

 	

0.7	


the man VP 	

 	

VP → Vi 	

 	

0.4	


the man Vi 	

 	

Vi → laughs	

 	

1.0	


the man laughs 	

	



TOTAL PROBABILITY = 1.0×0.3×1.0×0.7×0.4×1.0	





Properties of PCFGs 

Given a sentence S, the set of derivations for 
that sentence is T(S). Then a PCFG assigns a 
probability to each element in T(S), so that 
parse trees can ranked in order of probability.	



The probability of a sentence S is	





Learning Probabilistic CFGs 

PCFGs can be learned from a treebank, i.e. a 
set of already parsed sentences.	



Maximum Likelihood estimates of the 
probabilities can be obtained from the parse 
trees of the treebank:	





Algorithms for PCFGs 

Given a PCFG and a sentence S, T(S) be the set 
of trees with S as yield.	



•  Given a PCFG and a sentence S, how do we 
find	



•  Given a PCFG and a sentence S , how do we 
find	





Problems with PCFGs 

Problems in modeling 	


•  structural dependencies	


•  lexical dependencies	


Independence assumption: expansion of any 

non-terminal is independent of the expansion 
of other non-terminal	





Problems with PCFGs 

•  Lack of sensitivity to lexical choices (words).	


•  Importance of lexical information in selecting 

correct attachment of ambiguous ���
PP-attachments.	





PP-Attachment Ambiguity 





The two parses differ only in one rule:	


•  VP → VP PP	


•  NP → NP PP	


If P(VP → VP PP | VP) > P(NP → NP PP | NP) 

then the first parse is more probable; otherwise 
the second is more probable.	



Attachment decision is ���
completely independent of the words	





Problems with PCFGs 

•  A PCFG cannot distinguish between different 
derivations which use the same rules	





Coordination Ambiguity 





The two parse trees have identical rules, and 
therefore have identical probabilities under any 
assignment of PCFG rule probabilities.	





Problems with PCFGs 

•  Probabilities of sub-trees cannot be 
dependent on context. E.g., a pronoun is 
relatively more common as a subject than as 
an object in a sentence, but a single rule ���
NP → Pro cannot account for this fact.	







Lexicalized PCFGs 

A lexical head is associated to each syntactic 
constituent. 	



Each PCFG rule is augmented to identify one 
right-hand side constituent as its head 
daughter.	



p(r(n) | n, h(n))	


Problems with data sparseness: need to smooth 

to avoid 0 probabilities.	





Data Sparseness 

Use of lexical information enlarges an already 
existing problem: in WSJ, 15% of all test 
data sentences contain a rule never seen in 
training.	



We’ll see later how to deal with data 
sparseness.	





Lexicalized PCFGs 

•  Each PCFG rule is augmented to identify one 
right-hand side constituent as its head 
daughter.	


–  S → NP VP 	

 	

 	

(VP is the head)	


–  VP → Vt NP	

 	

 	

(Vt is the head)	


–  NP → DT NN 	

 	

(NN is the head)	



•  A core idea in linguistics (Dependency 
Grammar, X-bar Theory, Head-Driven 
Phrase Structure Grammar)	





Rules for identifying heads 

•  Need a way to identify heads in the rules	


•  There are good linguistics criteria…���

unfortunately they don’t always work with 
real-world grammars extracted from 
treebanks	



•  Need of integrating linguistic criteria with 
hacks which rely on the idiosyncrasies of the 
treebank	





Adding Headwords to Trees 



Adding Headwords to Rules 

We can estimate probabilities for lexicalized 
PCFGs as for simple PCFGs. 	



•  VP(dumped) → VBD(dumped) NP(sacks) PP(into)	


•  …	


However, this produces an increase in the 

number of rules and a problem of data 
sparseness because no treebank is big enough 
to train such probabilities.	





Adding Headwords to Rules 

Need some simplifying independence 
assumptions in order to cluster some of the 
counts	



Statistical parsers (e.g., Charniak, Collins) 
usually differ in the independence 
assumptions they make	





Headwords and Dependencies 

A new representation: a tree is represented as a 
set of dependencies, not as a set of context-
free rules	



A dependency is a 8-tuple:	


–  headword	


–  headtag	


–  modifier word	


–  modifier tag	


–  parent non-terminal	


–  head non-terminal	


–  modifier non-terminal	


–  direction	





Headwords and Dependencies 

Each rule with n children contributes ���
(n - 1)  dependencies:	



VP(dumped,VBD) ⇒ VBD(dumped,VBD) NP(sacks,NNS)	



⇓	



(dumped, VBD, sacks, NNS, VP, VBD, NP, RIGHT)	







Headwords and Dependencies 

(told, V, Clinton, NNP, VP, V, NP, RIGHT)	


(told, V, that, COMP, VP, V, SBAR, RIGHT)	





Headwords and Dependencies 

(told, V, yesterday, NN, S, VP, NP, LEFT)	


(told, V, Hillary, NNP, S, VP, NP, LEFT)	





Smoothed Estimation 

We need to perform some kind of smoothing to 
avoid 0 probabilities. E.g.:	



where e1, e2 and e3 are maximum likelihood 
estimates with different contexts and λ1, λ2 and 
λ3 are smoothing parameters where 0 ≤ λi ≤ 1	





Constituency Parsers (1) 

•  Michael Collins ���
http://www.cs.columbia.edu/~mcollins/code.html  
available as Solaris/Linux executable w/o the 
possibility of retraining on different corpora	



•  Dan Bikel’s Multilingual Statistical Parsing 
Engine���
http://www.cis.upenn.edu/~dbikel/software.html#stat-parser 
Java reimplementation of Collins’ parser, highly 
customizable to new corpora and new languages 
(English, Chinese, Arabic, Italian)	





Constituency Parsers (2) 

•  Stanford parser 
http://nlp.stanford.edu/software/lex-parser.shtml ���
a Java implementation of probabilistic natural 
language parsers, both highly optimized PCFG and 
dependency parsers, and a lexicalized PCFG parser 
(applied to English, Chinese, German, Italian, Arabic)���



Constituency Parsers (3) 
•  Berkeley parser 

https://github.com/slavpetrov/berkeleyparser 	


state-of-the-art for English on the Penn Treebank (*)	


outperforms other parsers in languages different from English 

(e.g. German, Chinese, French)	


no need of language-specific adaptations	


written in Java	


based on a hierarchical coarse-to-fine parsing, where a 

sequence of grammars is considered, each being the 
refinement, i.e. a partial splitting, of the preceding one.	





Constituency Parsers (4) 
•  Charniak-Johnson reranking parser 

http://bllip.cs.brown.edu/resources.shtml	


state-of-the-art for English on the Penn Treebank	


based on two steps: the former generates the N best analyses, 

the latter reranks them using various features.	





Dependency Parsers (1) 

•  MaltParser ���
http://maltparser.org/ 
a language-independent system for data-driven 
dependency parsing written in Java (open source).���
Applied to Bulgarian, Chinese, Czech, Danish, Dutch, 
English, German, Italian, Swedish, Turkish.	



•  DeSR Dependency Parser 
http://desr.sourceforge.net 
a shift-reduce dependency parser (open source).���
Applied to Bulgarian, Chinese, Czech, Danish, Dutch, 
English, German, Italian, Swedish, Turkish.���
Online demo: http://tanl.di.unipi.it/en/ 	





Dependency Parsers (2) 

•  MATE Parsers ���
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/
matetools.en.html  

•  TurboParser ���
http://www.cs.cmu.edu/~ark/TurboParser/  

•  NLP4J Parser ���
https://emorynlp.github.io/nlp4j/components/dependency-
parsing.html  

•  RBG Parser ���
https://github.com/taolei87/RBGParser 	





Dependency Parsers (3) 

Complete pipelines:	



•  UDPipe���
https://ufal.mff.cuni.cz/udpipe  

•  Google SyntaxNet���
https://github.com/tensorflow/models/tree/master/syntaxnet  



Online Demos 
• http://nlp.mathcs.emory.edu:8080/nlp4j/NLP4JServlet  

• http://nlp.stanford.edu:8080/parser/  

• http://demo.ark.cs.cmu.edu/parse  



1. Context Free Grammars (CFGs)	


2. Efficiency and Expressivity	


3. Features and Unification	


4. Dependency Grammars	


5. Resolving Ambiguity	


6. Treebanks and Evaluation	





6. Treebanks and Evaluation 

•  Treebanks (PennTreeBank)	


•  Evaluation of parsers	


•  EVALITA parsing tasks	





Treebanks 

•  Set of sentences where each sentence is 
associated with the corresponding linguistic 
information:	



–  Part of speech (PoS) tags ���
(e.g., N=noun, V=verb)	



–  parse trees	


•  Initially available for English only.	


•  Currently there are treebanks for several 

different languages (e.g., Chinese, Czech, 
German, French, Arabic, Italian, …).	





Penn Treebank 

•  Penn Treebank (PTB): a large corpus of 
American English texts annotated both with 
PoS tags and with parse trees.	



•  Wall Street Journal (WSJ): the PTB subset 
usually adopted to test parsers’ performance	





Wall Street Journal 
•  Wall Street Journal (WSJ):	



–  more than 1 million words	


–  automatically annotated and manually 

corrected	


–  divided into sections (00-24)	


–  training: sections 02-21	


–  validation: section 00	


–  test: section 23	


–  sentences of length < 40	







Parser Evaluation 
•  evaluation of bracketing accuracy in a test-file 

against a gold-file	


•  PARSEVAL performance measures (Black et 

al. 1991): labeled precision, labeled recall, 
crossing brackets	



•  a constituent in a candidate parse c of sentence 
s is labeled “correctly” if there is a constituent 
in the treebank parse with same starting point, 
ending point and non-terminal symbol.	





Parser Evaluation 

cross-brackets: the number of crossed brackets (e.g. 
the number of constituents for which the treebank 
has a bracketing such as ((A B) C) but the candidate 
parse has a bracketing such as (A (B C)))	





Parser Evaluation 
•  best results on WSJ: 	



–  about 90% for both precision and recall and about 
1% cross-bracketed constituents	



–  reranking parsers: about 92%	





CoNLL Shared Tasks 
Dependency parsing:	


•  CoNLL 2006 – Multilingual parsing: Arabic, 

Bulgarian, Chinese, Czech, Danish, Dutch, German, 
English, Japanese, Polish, Slovene, Spanish, 
Swedish, Turkish	



•  CoNLL 2007: 	


–  Multilingual track: Arabic, Basque, Catalan, 

Chinese, Czech, English, Greek, Hungarian, 
Italian, Turkish	



–  Domain Adaptation track	





EVALITA (http://www.evalita.it) 

•  Evaluation of NLP Tools for Italian	


•  First edition 	



–  Evaluation: May 2007	


–  Workshop: September 2007	



•  Second edition 	


–  Evaluation: September 2009	


–  Workshop: December 2009	



•  Third edition 	


–  Evaluation: October 2011	


–  Workshop: January 2012	





EVALITA 2007 

•  Five tasks:	


–  PoS Tagging 	


–  Parsing 	


–  WSD 	


–  Temporal Expressions 	


–  Named Entities	





EVALITA 2009 
•  Five text tasks:	



–  PoS Tagging 	


–  Parsing 	


–  Lexical Substitution	


–  Entity Recognition	


–  Textual Entailment	



•  Three speech tasks:	


–  Connected Digits Recognition	


–  Spoken Dialogue Systems Evaluation	


–  Speaker Identity Verification	





EVALITA 2011 
•  Text tasks:	



•  Parsing 	


•  Named Entity Recognition on Transcribed Broadcast News	


•  Cross-Document Coreference Resolution	


•  Anaphora Resolution	


•  Super Sense Tagging	


•  Frame Labeling over Italian Texts	


•  Lemmatisation	



•  Speech tasks:	


•  Automatic Speech Recognition - Large Vocabulary Transcription	


•  Forced Alignment on Spontaneous Speech	


•  Voice Applications on Mobile - Student Contest	





EVALITA 2014 Parsing Task 

•  http://www.evalita.it/2014/tasks/dep_par4IE 
•  Dependency Parsing task 

based on the newly developed “Italian Stanford 
Dependency Treebank” (ISDT) 



EVALITA 2014 Parsing Task 

Three main novelties:  
•  the size of the dataset, much bigger than the 

resources used in the previous EVALITA 
campaigns;  

•  the annotation scheme, compliant to de facto 
standards at the level of both representation 
format (CoNLL) and adopted tagset (Stanford 
Dependencies); 

•  oriented to supporting IE tasks, a feature 
inherited from Stanford Dependencies. 



Italian SD Treebank 

•  Italian resource annotated according to 
Stanford Dependencies. 

•  Obtained through a semi-automatic 
conversion process starting from MIDT. 

•  MIDT in turn was obtained merging two 
existing Italian treebanks: TUT and ISST-
TANL.  



EVALITA 2014 Parsing Task 

Two subtasks:  
•  basic task on standard dependency parsing of 

Italian texts: double evaluation track aimed at 
testing the performance of parsing systems as 
well as their suitability to IE tasks; 

•  pilot task on cross-lingual transfer parsing: a 
parser trained on ISDT (universal version) is 
used on test sets of other (not necessarily 
typologically related) languages.  



Open Issues - 1 

How well does a parser trained on a given 
corpus work when applied to a different 
corpus? 	


E.g., training on WSJ and testing on a different 
treebank (e.g., the Brown corpus) results in a 
considerable drop in performance. 	





Open Issues - 2 

How much do the proposed approaches rely on 
specificities of a given treebank and/or of a 
given language (usually English)?	



•  Training and testing on the Brown corpus 
produces worse results than on WSJ.	



•  On languages other than English performance 
is worse (sometimes considerably worse).	



•  Language-independent approaches are 
emerging.	





Open Issues - 3 

What happens if we want to work on languages 
without (or with a limited amount of) 
resources?	



Performance crucially relies on the availability 
of sufficiently large treebanks.	




