
Dependency Parsing

•  The problem:
–  Input: Sentence x=w0, w1, …, wn with w0=root
– Output: Dependency graph G = (V, A) for x

where:
•  V={0, 1, . . . , n} is the vertex set,
•  A is the arc set, i.e., (i, j, k)∈A represents a

dependency from wi to wj with label lk∈L

Dependency Parsing

•  Two main approaches:
– Grammar-based parsing

•  Context-free dependency grammar
•  Constraint dependency grammar

– Data-driven parsing
•  Transition-based models
•  Graph-based models

Grammar-based Parsing

– Context-free dependency grammar
•  Dependency grammar as lexicalized CFG:

– H −→ L1 · · · Lm h R1 · · · Rn

– H ∈ VN ; h ∈ VT ; L1 · · · Lm,R1 · · · Rn∈ VN
*

•  Standard context-free parsing algorithms
– Constraint dependency grammar

•  Parsing as constraint satisfaction:
– Grammar consists of a set of boolean constraints, i.e.

logical formulas that describe well-formed dependency
graphs.

– Constraint propagation removes candidate graphs that
contradict constraints (eliminative parsing).

Data-driven Parsing

– Transition-based models
•  Define a transition system (state machine) for

mapping a sentence to its dependency graph.
•  Learning: Induce a model for predicting the next

state transition, given the transition history.
•  Parsing: Construct the optimal transition

sequence, given the induced model.

Data-driven Parsing

– Graph-based models
•  Define a space of candidate dependency graphs

for a sentence.
•  Learning: Induce a model for scoring an entire

dependency graph for a sentence.
•  Parsing: Find the highest-scoring dependency

graph, given the induced model.

Pros and Cons of Dependency Parsing

•  Four types of considerations:
–  Complexity: faster than constituency
–  Transparency: direct encoding of predicate-argument

structure
–  Word order: suitable for free word order languages
–  Expressivity: less expressive than constituency	

Dependency Parsing

•  Increasing interest, starting from the shared
tasks on multilingual dependency parsing at
CoNLL 2006 & 2007 and ending with UD	

•  Suitable to deal with languages with relatively
free word order	

•  Influenced phrase structure parsing too (role
of heads, bilexical relations for
disambiguation, …)	

CoNLL Shared Tasks
•  CoNLL 2006 – Multilingual dependency parsing:

Arabic, Bulgarian, Chinese, Czech, Danish, Dutch,
German, English, Japanese, Polish, Slovene,
Spanish, Swedish, Turkish	

•  CoNLL 2007: 	

–  Multilingual track: Arabic, Basque, Catalan,

Chinese, Czech, English, Greek, Hungarian,
Italian, Turkish	

–  Domain Adaptation track	

Stanford Dependencies

•  Stanford Dependencies (SDs) provide a
representation of grammatical relations
between words in a sentence.

•  Designed to be easily understood and
effectively used by people who want to
extract textual relations (and not only by
linguists).

•  SDs are triplets: name of the relation,
governor and dependent. 	

Two Options

•  every word of the original sentence is
present as a node with relations between
it and other nodes
– close parallelism to the source text words

•  certain words are “collapsed” out of the
representation, e.g. turning prepositions
into relations
– more useful for relation extraction and

shallow language understanding tasks.

Basic Dependency Representation
each word in the sentence (except the head of the

sentence) is the dependent of one other word

Standard Dependencies
(collapsed and propagated)

Stanford Dependencies

• Initially produced using hand-written
tregex patterns over English phrase-
structure trees.

• Later available for Chinese and other
languages, among them Italian.

• Now superseded by Universal
Dependencies.

Universal Dependencies

•  Cross-linguistically consistent grammatical
annotation

•  Support multilingual research in NLP and
linguistics
–  Linguistic analysis within and across languages
–  Syntactic parsing in a monolingual and cross-lingual

setting
–  Useful information for downstream applications

•  Build on common usage and existing de facto
standards

Material taken from Nivre’s presentation at CLiC-it 2016 ���
“Reflections on Universal Dependencies”

Universal Dependencies
http://universaldependencies.org/

•  Community effort (Stanford dependencies,
Google universal POS tags, Interset interlingua
for morphosyntactic tagsets)

•  Universal taxonomy with language-specific
elaboration
–  Languages select from a universal pool of categories
–  Allow language-specific extensions

Dependency Relations

•  Taxonomy of 37 universal grammatical relations
–  Three types of structures: nominals, clauses,

modifiers
–  Core arguments vs. other dependents (not

complements vs. adjuncts)
–  Language-specific subtypes

•  Basic and enhanced representations
–  Basic dependencies form a (possibly non-projective)

tree
–  Additional dependencies in the enhanced

representation

1. Context Free Grammars (CFGs)	

2. Efficiency and Expressivity	

3. Features and Unification	

4. Dependency Grammars	

5. Resolving Ambiguity	

6. Treebanks and Evaluation	

5. Resolving Ambiguity
•  Ambiguity	

•  Probabilistic Context Free Grammars	

–  Using PCFGs for disambiguation	

•  Training PCFGs	

•  Lexical preferences	

Ambiguity

•  lexical vs. structural	

lexical fire verb or noun?	

if it is a verb, which sense? ���

shoot, dismiss or burn?
structural ���

I saw the man on the hill with the telescope	

Ambiguity

•  local vs. global	

local ���

garden path sentences:���
the horse raced past the barn fell	

–  need backtracking, lookahead or parallelism
global ���

I saw the man on the hill with the telescope	

–  need to solve the ambiguity using context	

Ambiguity

•  Not a phenomenon limited to “pathological”
sentences but a pervasive feature of language 	

•  Necessary to find effective ways to deal ���
with it, particularly when we aim at providing
robust parsers.	

Probabilistic CFGs

A PCFG is a 5-tuple G = (N, Σ, P, S, D), where
D is a function assigning probabilities to each
rule in P.	

P(A → β | A)	

Considering all the possible expansions of a

non-terminal, the sum of their probabilities
must be 1.	

Probability of a parse tree T on a sentence S:	

P(T, S) = Πn∈T p(r(n))	

A Probabilistic CFG
S → NP VP	

 1.0	

NP → DT NN	

 0.3	

NP → NP PP	

 0.7	

NN → man	

 0.7	

NN → woman	

 0.2	

NN → telescope	

 0.1	

DT → the	

 1.0	

VP → Vi	

 0.4	

VP → Vt NP	

 0.4	

VP → VP PP	

 0.2	

Vi → laughs	

 1.0	

Vt → saw	

 1.0	

PP → P NP	

 1.0	

P → with	

 0.5	

P → in	

 0.5	

Probability of a tree with rules αi → βi:���
 Πi P(αi → βi | αi)	

Derivation 	

 	

Rules used 	

 	

Probability	

S 	

 	

 	

 	

S → NP VP	

 	

1.0	

NP VP 	

 	

NP → DT N	

 	

0.3	

DT N VP 	

 	

DT → the 	

 	

1.0	

the NP VP 	

 	

N → man 	

 	

0.7	

the man VP 	

 	

VP → Vi 	

 	

0.4	

the man Vi 	

 	

Vi → laughs	

 	

1.0	

the man laughs 	

	

TOTAL PROBABILITY = 1.0×0.3×1.0×0.7×0.4×1.0	

Properties of PCFGs

Given a sentence S, the set of derivations for
that sentence is T(S). Then a PCFG assigns a
probability to each element in T(S), so that
parse trees can ranked in order of probability.	

The probability of a sentence S is	

Learning Probabilistic CFGs

PCFGs can be learned from a treebank, i.e. a
set of already parsed sentences.	

Maximum Likelihood estimates of the
probabilities can be obtained from the parse
trees of the treebank:	

Algorithms for PCFGs

Given a PCFG and a sentence S, T(S) be the set
of trees with S as yield.	

•  Given a PCFG and a sentence S, how do we
find	

•  Given a PCFG and a sentence S , how do we
find	

Problems with PCFGs

Problems in modeling 	

•  structural dependencies	

•  lexical dependencies	

Independence assumption: expansion of any

non-terminal is independent of the expansion
of other non-terminal	

Problems with PCFGs

•  Lack of sensitivity to lexical choices (words).	

•  Importance of lexical information in selecting

correct attachment of ambiguous ���
PP-attachments.	

PP-Attachment Ambiguity

The two parses differ only in one rule:	

•  VP → VP PP	

•  NP → NP PP	

If P(VP → VP PP | VP) > P(NP → NP PP | NP)

then the first parse is more probable; otherwise
the second is more probable.	

Attachment decision is ���
completely independent of the words	

Problems with PCFGs

•  A PCFG cannot distinguish between different
derivations which use the same rules	

Coordination Ambiguity

The two parse trees have identical rules, and
therefore have identical probabilities under any
assignment of PCFG rule probabilities.	

Problems with PCFGs

•  Probabilities of sub-trees cannot be
dependent on context. E.g., a pronoun is
relatively more common as a subject than as
an object in a sentence, but a single rule ���
NP → Pro cannot account for this fact.	

Lexicalized PCFGs

A lexical head is associated to each syntactic
constituent. 	

Each PCFG rule is augmented to identify one
right-hand side constituent as its head
daughter.	

p(r(n) | n, h(n))	

Problems with data sparseness: need to smooth

to avoid 0 probabilities.	

Data Sparseness

Use of lexical information enlarges an already
existing problem: in WSJ, 15% of all test
data sentences contain a rule never seen in
training.	

We’ll see later how to deal with data
sparseness.	

Lexicalized PCFGs

•  Each PCFG rule is augmented to identify one
right-hand side constituent as its head
daughter.	

–  S → NP VP 	

 	

 	

(VP is the head)	

–  VP → Vt NP	

 	

 	

(Vt is the head)	

–  NP → DT NN 	

 	

(NN is the head)	

•  A core idea in linguistics (Dependency
Grammar, X-bar Theory, Head-Driven
Phrase Structure Grammar)	

Rules for identifying heads

•  Need a way to identify heads in the rules	

•  There are good linguistics criteria…���

unfortunately they don’t always work with
real-world grammars extracted from
treebanks	

•  Need of integrating linguistic criteria with
hacks which rely on the idiosyncrasies of the
treebank	

Adding Headwords to Trees

Adding Headwords to Rules

We can estimate probabilities for lexicalized
PCFGs as for simple PCFGs. 	

•  VP(dumped) → VBD(dumped) NP(sacks) PP(into)	

•  …	

However, this produces an increase in the

number of rules and a problem of data
sparseness because no treebank is big enough
to train such probabilities.	

Adding Headwords to Rules

Need some simplifying independence
assumptions in order to cluster some of the
counts	

Statistical parsers (e.g., Charniak, Collins)
usually differ in the independence
assumptions they make	

Headwords and Dependencies

A new representation: a tree is represented as a
set of dependencies, not as a set of context-
free rules	

A dependency is a 8-tuple:	

–  headword	

–  headtag	

–  modifier word	

–  modifier tag	

–  parent non-terminal	

–  head non-terminal	

–  modifier non-terminal	

–  direction	

Headwords and Dependencies

Each rule with n children contributes ���
(n - 1) dependencies:	

VP(dumped,VBD) ⇒ VBD(dumped,VBD) NP(sacks,NNS)	

⇓	

(dumped, VBD, sacks, NNS, VP, VBD, NP, RIGHT)	

Headwords and Dependencies

(told, V, Clinton, NNP, VP, V, NP, RIGHT)	

(told, V, that, COMP, VP, V, SBAR, RIGHT)	

Headwords and Dependencies

(told, V, yesterday, NN, S, VP, NP, LEFT)	

(told, V, Hillary, NNP, S, VP, NP, LEFT)	

Smoothed Estimation

We need to perform some kind of smoothing to
avoid 0 probabilities. E.g.:	

where e1, e2 and e3 are maximum likelihood
estimates with different contexts and λ1, λ2 and
λ3 are smoothing parameters where 0 ≤ λi ≤ 1	

Constituency Parsers (1)

•  Michael Collins ���
http://www.cs.columbia.edu/~mcollins/code.html
available as Solaris/Linux executable w/o the
possibility of retraining on different corpora	

•  Dan Bikel’s Multilingual Statistical Parsing
Engine���
http://www.cis.upenn.edu/~dbikel/software.html#stat-parser
Java reimplementation of Collins’ parser, highly
customizable to new corpora and new languages
(English, Chinese, Arabic, Italian)	

Constituency Parsers (2)

•  Stanford parser
http://nlp.stanford.edu/software/lex-parser.shtml ���
a Java implementation of probabilistic natural
language parsers, both highly optimized PCFG and
dependency parsers, and a lexicalized PCFG parser
(applied to English, Chinese, German, Italian, Arabic)���

Constituency Parsers (3)
•  Berkeley parser

https://github.com/slavpetrov/berkeleyparser 	

state-of-the-art for English on the Penn Treebank (*)	

outperforms other parsers in languages different from English

(e.g. German, Chinese, French)	

no need of language-specific adaptations	

written in Java	

based on a hierarchical coarse-to-fine parsing, where a

sequence of grammars is considered, each being the
refinement, i.e. a partial splitting, of the preceding one.	

Constituency Parsers (4)
•  Charniak-Johnson reranking parser

http://bllip.cs.brown.edu/resources.shtml	

state-of-the-art for English on the Penn Treebank	

based on two steps: the former generates the N best analyses,

the latter reranks them using various features.	

Dependency Parsers (1)

•  MaltParser ���
http://maltparser.org/
a language-independent system for data-driven
dependency parsing written in Java (open source).���
Applied to Bulgarian, Chinese, Czech, Danish, Dutch,
English, German, Italian, Swedish, Turkish.	

•  DeSR Dependency Parser
http://desr.sourceforge.net
a shift-reduce dependency parser (open source).���
Applied to Bulgarian, Chinese, Czech, Danish, Dutch,
English, German, Italian, Swedish, Turkish.���
Online demo: http://tanl.di.unipi.it/en/ 	

Dependency Parsers (2)

•  MATE Parsers ���
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/
matetools.en.html

•  TurboParser ���
http://www.cs.cmu.edu/~ark/TurboParser/

•  NLP4J Parser ���
https://emorynlp.github.io/nlp4j/components/dependency-
parsing.html

•  RBG Parser ���
https://github.com/taolei87/RBGParser 	

Dependency Parsers (3)

Complete pipelines:	

•  UDPipe���
https://ufal.mff.cuni.cz/udpipe

•  Google SyntaxNet���
https://github.com/tensorflow/models/tree/master/syntaxnet

Online Demos
• http://nlp.mathcs.emory.edu:8080/nlp4j/NLP4JServlet

• http://nlp.stanford.edu:8080/parser/

• http://demo.ark.cs.cmu.edu/parse

1. Context Free Grammars (CFGs)	

2. Efficiency and Expressivity	

3. Features and Unification	

4. Dependency Grammars	

5. Resolving Ambiguity	

6. Treebanks and Evaluation	

6. Treebanks and Evaluation

•  Treebanks (PennTreeBank)	

•  Evaluation of parsers	

•  EVALITA parsing tasks	

Treebanks

•  Set of sentences where each sentence is
associated with the corresponding linguistic
information:	

–  Part of speech (PoS) tags ���
(e.g., N=noun, V=verb)	

–  parse trees	

•  Initially available for English only.	

•  Currently there are treebanks for several

different languages (e.g., Chinese, Czech,
German, French, Arabic, Italian, …).	

Penn Treebank

•  Penn Treebank (PTB): a large corpus of
American English texts annotated both with
PoS tags and with parse trees.	

•  Wall Street Journal (WSJ): the PTB subset
usually adopted to test parsers’ performance	

Wall Street Journal
•  Wall Street Journal (WSJ):	

–  more than 1 million words	

–  automatically annotated and manually

corrected	

–  divided into sections (00-24)	

–  training: sections 02-21	

–  validation: section 00	

–  test: section 23	

–  sentences of length < 40	

Parser Evaluation
•  evaluation of bracketing accuracy in a test-file

against a gold-file	

•  PARSEVAL performance measures (Black et

al. 1991): labeled precision, labeled recall,
crossing brackets	

•  a constituent in a candidate parse c of sentence
s is labeled “correctly” if there is a constituent
in the treebank parse with same starting point,
ending point and non-terminal symbol.	

Parser Evaluation

cross-brackets: the number of crossed brackets (e.g.
the number of constituents for which the treebank
has a bracketing such as ((A B) C) but the candidate
parse has a bracketing such as (A (B C)))	

Parser Evaluation
•  best results on WSJ: 	

–  about 90% for both precision and recall and about
1% cross-bracketed constituents	

–  reranking parsers: about 92%	

CoNLL Shared Tasks
Dependency parsing:	

•  CoNLL 2006 – Multilingual parsing: Arabic,

Bulgarian, Chinese, Czech, Danish, Dutch, German,
English, Japanese, Polish, Slovene, Spanish,
Swedish, Turkish	

•  CoNLL 2007: 	

–  Multilingual track: Arabic, Basque, Catalan,

Chinese, Czech, English, Greek, Hungarian,
Italian, Turkish	

–  Domain Adaptation track	

EVALITA (http://www.evalita.it)

•  Evaluation of NLP Tools for Italian	

•  First edition 	

–  Evaluation: May 2007	

–  Workshop: September 2007	

•  Second edition 	

–  Evaluation: September 2009	

–  Workshop: December 2009	

•  Third edition 	

–  Evaluation: October 2011	

–  Workshop: January 2012	

EVALITA 2007

•  Five tasks:	

–  PoS Tagging 	

–  Parsing 	

–  WSD 	

–  Temporal Expressions 	

–  Named Entities	

EVALITA 2009
•  Five text tasks:	

–  PoS Tagging 	

–  Parsing 	

–  Lexical Substitution	

–  Entity Recognition	

–  Textual Entailment	

•  Three speech tasks:	

–  Connected Digits Recognition	

–  Spoken Dialogue Systems Evaluation	

–  Speaker Identity Verification	

EVALITA 2011
•  Text tasks:	

•  Parsing 	

•  Named Entity Recognition on Transcribed Broadcast News	

•  Cross-Document Coreference Resolution	

•  Anaphora Resolution	

•  Super Sense Tagging	

•  Frame Labeling over Italian Texts	

•  Lemmatisation	

•  Speech tasks:	

•  Automatic Speech Recognition - Large Vocabulary Transcription	

•  Forced Alignment on Spontaneous Speech	

•  Voice Applications on Mobile - Student Contest	

EVALITA 2014 Parsing Task

•  http://www.evalita.it/2014/tasks/dep_par4IE
•  Dependency Parsing task

based on the newly developed “Italian Stanford
Dependency Treebank” (ISDT)

EVALITA 2014 Parsing Task

Three main novelties:
•  the size of the dataset, much bigger than the

resources used in the previous EVALITA
campaigns;

•  the annotation scheme, compliant to de facto
standards at the level of both representation
format (CoNLL) and adopted tagset (Stanford
Dependencies);

•  oriented to supporting IE tasks, a feature
inherited from Stanford Dependencies.

Italian SD Treebank

•  Italian resource annotated according to
Stanford Dependencies.

•  Obtained through a semi-automatic
conversion process starting from MIDT.

•  MIDT in turn was obtained merging two
existing Italian treebanks: TUT and ISST-
TANL.

EVALITA 2014 Parsing Task

Two subtasks:
•  basic task on standard dependency parsing of

Italian texts: double evaluation track aimed at
testing the performance of parsing systems as
well as their suitability to IE tasks;

•  pilot task on cross-lingual transfer parsing: a
parser trained on ISDT (universal version) is
used on test sets of other (not necessarily
typologically related) languages.

Open Issues - 1

How well does a parser trained on a given
corpus work when applied to a different
corpus? 	

E.g., training on WSJ and testing on a different
treebank (e.g., the Brown corpus) results in a
considerable drop in performance. 	

Open Issues - 2

How much do the proposed approaches rely on
specificities of a given treebank and/or of a
given language (usually English)?	

•  Training and testing on the Brown corpus
produces worse results than on WSJ.	

•  On languages other than English performance
is worse (sometimes considerably worse).	

•  Language-independent approaches are
emerging.	

Open Issues - 3

What happens if we want to work on languages
without (or with a limited amount of)
resources?	

Performance crucially relies on the availability
of sufficiently large treebanks.	

