
Grammars and Parsing

Alberto Lavelli
FBK-irst

lavelli@fbk.eu

1. Context Free Grammars (CFGs)	

2. Efficiency and Expressivity	

3. Features and Unification	

4. Dependency Grammars	

5. Resolving Ambiguity	

6. Treebanks and Evaluation	

1. Context Free Grammars
•  Grammars	

•  Context Free Grammars (CFGs)	

•  Basic Parsing Strategies for CFGs	

–  Top-Down	

–  Bottom-Up	

•  Parsing and Search	

•  Redundancy in Parsing	

Grammars

•  A grammar is a 4-tuple G = (N, Σ, P, S),
where	

–  N is a finite set of nonterminal symbols	

–  Σ is a finite set of terminal symbols, disjoint from

N	

–  P is a set of rules, i.e. a finite subset of 	

(N ∪ Σ)*N(N ∪ Σ)* × (N ∪ Σ)*	

Productions (α, β) ∈ P are usually written α → β	

–  S is a distinguished symbol in N called the start
symbol	

Chomsky hierarchy

Different types of grammars/languages
according to the definition of P:	

•  Regular grammars/languages	

•  Context-Free grammars/languages	

•  Context-Sensitive grammars/languages	

•  Unrestricted grammars/languages	

Rules
•  Regular Grammars:	

A → xB	

A → x	

where A and B are in N and x is in Σ*	

•  Context-Free Grammars:	

A → α	

where A is in N and α is in (N ∪ Σ)*	

•  Context-Sensitive Grammars:	

α → β	

where |α| ≤ |β|	

Phrase Structure

•  Language = collection of strings ���
but …	

•  Importance of hierarchical structure as well as
linear structure of a given sentence���

the book is on the table	

Sentence:	

the book is on the table 	

Parse tree:	

•  Lexical elements:	

–  the (DET)	

–  book, table (Noun)	

–  is (Verb)	

–  on (Preposition)	

•  Constituent phrases:	

–  the book (Noun Phrase)	

–  the table (Noun Phrase)	

–  on the table (Prepositional Phrase)	

– …	

Phrase Structure

Constituents can be indicated either by bracketing	

[S [NP [DET the] [N book]] [VP [V is] [PP on [NP [DET the] [N table]]]]]	

or by means of parse trees	

Phrase Structure

•  Hierarchical information about constituents
(dominance)	

•  Linear precedence information	

•  Labelling information (syntactic categories)	

Context-Free Grammars

Phrase structure grammars (PSGs) provide a
means of characterizing the structure of
sentences	

A Context-Free (Phrase Structure) Grammar
consists of a set of rules of the following form:	

A → X1 X2 … Xk (k ≥ 0)	

– A is a nonterminal (a category name; e.g. N, NP,

VP, DET, etc.)	

–  each Xi is either a nonterminal or a terminal ���

(i.e. a word)	

An example of a simple CFG

1.  S → NP VP	

2.  NP → John	

3.  NP → Mary	

4.  NP → DET N	

5.  DET → a	

6.  N → letter	

7.  VP → V NP	

8.  VP → V NP PP	

9.  VP → V PP	

10.  V → wrote	

11.  PP → P NP	

12.  P → to	

John wrote a letter	

John wrote a letter to Mary	

John wrote to Mary	

…	

Three questions

•  Are there effective procedures for recognition/
generation of CFGs?	

•  How do we use CFGs to parse (i.e. assign
structure to) strings?	

•  How do CFGs compare with FSLs
computationally/descriptively?	

Basic Parsing Strategies

Top-Down: A goal-driven strategy:	

1.  assume you are looking for S (i.e. sentence);	

2.  use rules ‘forward’ to ‘expand’ symbols until

input is derived (else fail) 	

Bottom-Up: A data-driven strategy:	

1.  assume you are looking for S;	

2.  use rules ‘backward’ to ‘combine’ symbols until

you get S (else fail)	

Basic Parsing Strategies

Other dimensions:	

–  left-to-right vs. right-to-left (but also head-driven

or island-driven)	

–  depth-first vs. breadth-first	

In the following examples, left-to-right and
depth-first are usually adopted	

Top-Down Strategy
Input: John wrote a letter	

1	

 S	

 :	

 John wrote a letter	

2	

 NP VP	

 :	

 John wrote a letter	

 S → NP VP	

3	

 VP	

 :	

 wrote a letter	

 NP → John	

4	

 V NP	

 :	

 wrote a letter	

 VP → V NP	

5	

 NP	

 :	

 a letter	

 V → wrote	

6	

 DET N	

 :	

 a letter	

 NP → DET N	

7	

 N	

 :	

 letter	

 DET → a	

8	

 :	

 N → letter	

Crucial Points (1)

Non-determinism: at step 4, we could have chosen to
‘expand’ VP according to rule 8:	

Need some way of exploring the possibilities and
recovering if necessary (backtracking)	

3	

 VP	

 :	

 wrote a letter	

4	

 V NP PP	

 :	

 wrote a letter	

 VP → V NP PP	

Crucial Points (2)

Left recursion: a problem for top-down strategy.���
If we added a new rule:	

(13) VP → VP PP	

and so on…	

3	

 VP	

 :	

 wrote a letter	

4	

 VP PP	

 :	

 wrote a letter	

 VP → VP PP	

5	

 VP PP PP	

 :	

 wrote a letter	

 VP → VP PP	

Bottom-Up Strategy
Input: John wrote a letter	

1	

 John wrote a letter	

2	

 NP wrote a letter	

 NP → John	

3	

 NP V a letter	

 V → wrote	

4	

 NP V DET letter	

 DET → a	

5	

 NP V DET N	

 N → letter	

6	

 NP V NP	

 NP → DET N	

7	

 NP VP	

 VP → V NP	

8	

 S	

 S → NP VP	

Crucial Points
Empty productions: a problem for bottom-up strategy.
Empty productions have the form:	

A → ε	

E.g.:	

	

NP → DET AP N ���
	

AP → ε���
	

AP → ADJ AP ���

 	

ADJ → lengthy���
 	

ADJ → interesting	

Crucial Points

These new rules allow NPs such as:���
	

a lengthy letter ���
	

a lengthy interesting letter ���
	

a letter ���

Note, however, that the rule AP → ε is always
applicable!	

Parsing and Search
In general, CFG parsing is non-deterministic.	

Top-Down Example:	

At different stages in the parsing process, more than one
rule may be applicable:	

Parsing and Search

Parsing algorithms need to explore the search space
systematically.	

To recover from errors, it is necessary to record the
state of a parse each time a choice occurs.	

Parsing and Search

E.g., considering the previous example,	

The parse state:	

VP	

 :	

 wrote a letter	

V	

 :	

 wrote a letter	

V NP	

 :	

 wrote a letter	

V NP PP	

 :	

 wrote a letter	

has three different successor states:	

Parsing and Search

Parse maintains a list of parse states called an agenda:	

•  remove states from agenda;	

•  generate successor states;	

•  add successors to agenda;	

Parse terminates successfully if the goal state (:) is
generated.	

Parse terminates unsuccessfully if it runs out of parse
states to explore (i.e. the agenda is empty).	

Parsing and Search
Search strategy:	

this is determined by the order in which agenda items
are considered:	

Rule S → S1 S2 … Sk 	

σ = rest on agenda	

Depth-first:	

S σ ⇒ S1 S2 … Sk σ	

Breadth-first:	

S σ ⇒ σ S1 S2 … Sk

Redundancy in Parsing
Input: John sang a song	

1	

 S	

 :	

 John sang a song	

2	

 NP VP	

 :	

 John sang a song	

 S → NP VP	

3	

 VP	

 :	

 sang a song	

 NP → John	

4	

 V NP PP	

 :	

 sang a song	

 VP → V NP PP	

5	

 NP PP	

 :	

 a song	

 V → sang	

6	

 DET N PP	

 :	

 a song	

 NP → DET N	

7	

 N PP	

 :	

 song	

 DET → a	

8	

 PP	

 :	

 N → song	

9	

 P NP	

 :	

 PP → P NP	

Redundancy in Parsing

4'	

 V NP	

 :	

 sang a song	

 VP → V NP	

5'	

 NP	

 :	

 a song	

 V → sang	

6'	

 DET N	

 :	

 a song	

 NP → DET N	

7'	

 N	

 :	

 song	

 DET → a	

8'	

 :	

 N → song	

1. Context Free Grammars (CFGs)	

2. Efficiency and Expressivity	

3. Features and Unification	

4. Dependency Grammars	

5. Resolving Ambiguity	

6. Treebanks and Evaluation	

2. Efficiency and Expressivity

•  Efficiency	

–  Redundancy in Parsing	

–  Active Chart Parsing	

•  Expressivity	

–  comparing CFGs and FSAs	

–  Pros and Cons of CFGs	

•  Agreement, subcategorization, …	

Chart Parsing

Dynamic programming technique which keeps track of
what has been done and of partial hypotheses.
Resulting data structure is called the active chart.	

The chart contains data structures called edges, which
represent (partially) recognized constituents.	

Dotted Rules

‘Dotted Rules’: edges have labels of the general form:	

C → X1 … Xj • Xj+1 … Xk 	

Symbols on the left of the dot (•) have been already
‘found’ (confirmed hypotheses). Symbols on the right
are still to be found.	

Chart Parsing

NP → DET • N	

 active edge	

S → • NP VP active and empty edge	

VP → V NP •	

 inactive edge	

Chart Parsing

The chart has edges of the form	

(i, j, A → α • β)	

Fundamental Rule of Chart Parsing
IF the chart contains the edges:

	

(i, j, A → α • Bβ) and (j, k, B → γ •) 	

THEN add the new edge:	

	

(i, k, A → αB • β)	

(α, β, γ possibly empty strings of symbols)	

A → α • Bβ	

B → γ •	

A → αB • β	

i	

 j	

 k	

Fundamental Rule of Chart Parsing
Fundamental rule only applies to chart containing
active and inactive edges.	

–  How do we get started	

Initialization:	

Initially chart contains inactive edges corresponding to
words in the input string:	

e.g. for input John sang a song	

0 	

John 	

1 	

sang 	

2 	

a 	

3 	

song 	

4	

•	

 •	

 •	

 •	

 •	

Rule Invocation
Bottom-Up :	

IF you add an edge (i, j, B → α •) 	

THEN for every rule of the form	

A → Bβ	

add an edge (i, i, A → • Ββ) 	

A → • Bβ	

B → α •	

i	

j	

Rule Invocation
Top-Down:	

IF you add an edge (i, j, B → α • Aβ) 	

THEN for every rule of the form	

A → γ	

add an edge (j, j, A → • γ) 	

B → α • Aβ	

 A → • γ	

i	

 j	

Comparing CFGs and FSAs
FSAs:	

•  recognition is efficient – linear time; but	

•  the formalism is not very expressive.	

CFGs:	

•  the basic parsing (recognition) strategies are not

efficient – exponential time; but	

•  using dynamic programming techniques we can do

better than this (Chart parsing; CKY algorithm;
Earley algorithm); and	

•  CFGs are more expressive than FSAs	

Comparing CFGs and FSAs

•  Any language describable with a FSA is describable
with a CFG.	

•  There are languages that can be described with a
CFG that cannot be described with a FSA.	

	

 	

Regular ⊂ Context Free	

•  There is a general agreement that NLs are not
Regular languages (i.e. cannot be adequately
described with FSAs)	

•  Much of the syntax of the world’s NLs seems to be
Context Free (i.e. can be adequately described with
CFGs).	

Pros and Cons of CFGs

Advantages:	

•  Can describe infinite languages and assign

appropriate syntactic structures	

•  Recognition (parsing) procedures can be

implemented reasonably efficiently – O(n3):	

–  Earley algorithm (Chart Parsing)	

–  Cocke-Kasami-Younger (CKY) algorithm	

–  Tomita’s generalized LR parser	

Pros and Cons of CFGs

•  NLs ≅ CFGLs?	

–  Long-standing argument	

–  Arguably some NLs are non-CFLs (e.g. Swiss

German – Shieber 1985)	

Pros and Cons of CFGs
Disadvantages:	

•  Difficult to capture certain NL phenomena

appropriately/adequately/elegantly:	

–  agreement	

–  subcategorization	

–  generalizations over word/constituent order	

–  relationships between different sentence types	

•  Some NL phenomena appear to require greater
mathematical expressivity (i.e. there is evidence that
some NLs are not CFLs)	

Grammar equivalence

•  Two grammars are weakly equivalent if they
generate the same language (i.e. the same set of
strings)	

•  Two grammars are strongly equivalent if they
generate the same language and they assign the same
phrase structure to each sentence	

Mildly context-sensitive grammars (e.g. TAGs, Tree
Adjoining Grammars)	

1. Context Free Grammars (CFGs)	

2. Efficiency and Expressivity	

3. Features and Unification	

4. Dependency Grammars	

5. Resolving Ambiguity	

6. Treebanks and Evaluation	

3. Features and Unification
•  Limitations of CFGs	

•  Unification-Based Grammars	

–  Feature Structures	

–  Unification	

–  The PATR Formalism	

–  Typed Feature Structures	

Agreement phenomena

Verbs have to “agree” with subjects	

NP	

 VP	

the boy	

 sees the girl(s)	

 singular	

the boys	

 see the girl(s)	

 plural	

Agreement phenomena

S → NPs VPs	

S → NPp VPp	

NPs → DETs Ns	

NPp → DETp Np	

DETs → the	

DETp → the	

Ns → boy	

Np → boys

VPs → Vs NPs	

VPs → Vs NPp	

VPp → Vp NPs	

VPp → Vp NPp	

Vs → sees	

Vp → see	

 Ns → girl	

 Np → girls	

Subcategorization

VP → V1 	

 	

 	

(die)	

VP → V2 NP 	

 	

(love)	

VP → V3 NP NP 	

(give)	

VP → V4 NP PP 	

(put)	

VP → V5 NP S 	

 	

(tell)	

VP → V6 S 	

 	

(believe)	

and so on…	

Different verbs may require different complements	

Unbounded Dependency
Constructions

E.g. Wh-questions:	

Who did Bill see ε?	

Who did Tom say that Bill saw ε?	

Who did Anna believe Tom said that Bill saw ε?	

•  Correct interpretation of who depends on

structure which is arbitrarily distant	

•  Difficult to capture UDCs with simple CFGs	

Criteria for Formalism Design
 in NLP

Generative Power: can the formalism describe the
language at all?	

Notational Expressivity: can the formalism capture
the appropriate generalizations?	

Computational Effectiveness: does the formalism
have a sensible, practical computational
interpretation?	

Note: simple CFGs score quite well on the first and
third criteria; less well on the second.	

Unification-Based Grammars

A family of related grammar formalisms.	

UBGs can be viewed as extensions of CFGs which	

•  make use of constraints on feature values (to capture

agreement, etc.)	

•  make use of syntactic features and allow

underspecification of linguistic objects (categories or
other representations)	

•  employ unification as a consistency checking /
information merging operation	

Examples of UBGs
•  FUG (Kay)	

•  LFG (Bresnan & Kaplan)	

•  GPSG (Gazdar, Klein, Pullum & Sag)	

•  HPSG (Pollard & Sag)	

•  PATR (Shieber)	

•  CUG (Uszkoreit)	

•  UCG (Calder et el.)	

•  DUG (Hellwig)	

•  RUG (Carlson)	

•  TUG (Popovich)	

Feature Structures

UBGs employ record-like objects to represent
categories.	

Third person singular NP:	

•  made up of features (cat, agreement, number,
person) and values	

•  values may be simple (e.g., NP, sing and 3) or
complex:	

Feature Structures

Feature structures may be drawn as directed graphs:	

cat	

 agreement	

number	

 person	

•	

NP	

•	

sing	

•	

3	

•	

•	

Feature Structures

Feature structures may be re-entrant:	

f	

 g	

 f	

 g	

•	

•	

•	

•	

h	

h	

•	

a	

•	

a	

•	

h	

•	

a	

≠	

Feature Structures

Feature structures may be re-entrant:	

Reentrant Feature Structures

A linguistic example:	

Feature Structures

Feature structures allow for underspecification of
categories	

Singular NP:	

Nominative NP:	

Unification

Unification
Unification fails when feature structures are
incompatible	

The PATR Formalism

Originally introduced by Shieber and his colleagues at
SRI International	

S → NP VP	

C0 → C1 C2	

	

	

〈C0 cat〉 = S	

	

	

〈C1 cat〉 = NP	

	

	

〈C2 cat〉 = VP	

	

	

〈C1 case〉 = nominative	

	

	

〈C1 agreement〉 = 〈C2 agreement〉 	

Typed Feature Structures

Limitations of simple feature structure formalisms:	

•  No way to constrain possible values of a feature

(e.g., the feature NUMBER can take only SING and
PLU values)	

•  No way to capture generalization across feature
structures (e.g., different types of English verb
phrases)	

Solution: use of types.	

Typed Feature Structures

•  Each feature structure is labeled by a type	

•  Each type has appropriateness conditions

expressing which features are appropriate for it	

•  Types are organized in a type hierarchy	

•  Unification should take into account the types of

feature structures in addition to unifying attributes
and values	

1. Context Free Grammars (CFGs)	

2. Efficiency and Expressivity	

3. Features and Unification	

4. Dependency Grammars	

5. Resolving Ambiguity	

6. Treebanks and Evaluation	

4. Dependency Grammars
•  Constituency vs. Dependency	

•  Dependency Grammars	

•  Dependency Parsing	

 some material taken from McDonald & Nivre ESSLLI 2007 course
“Introduction on Data-Driven Dependency Parsing”	

Dependency Grammars

•  [Tesnière 1959]	

•  Syntactic structure of a sentence consists of

lexical items, linked by binary asymmetric
relations called dependencies.	

•  Dependency relations hold between a head
(parent) and a dependent (daughter)	

Phrase Structure

Dependency Structure

Constituency vs. Dependency

Phrase structure grammars	

•  Words appear only as leaves	

•  Internal nodes of trees consist of non-

terminals	

Dependency grammars	

•  No non-terminals	

•  Only words and binary relations between them	

Constituency vs. Dependency

•  Phrase structures explicitly represent
–  phrases (non-terminal nodes),
–  structural categories (non-terminal labels),
–  possibly some functional categories (grammatical

functions).
•  Dependency structures explicitly represent

–  head-dependent relations (directed arcs),
–  functional categories (arc labels),
–  possibly some structural categories (PoS).

Dependency Grammars

Family of grammatical formalisms differing in:	

•  Terminology (head/dependent, governor/

modifier, regent/subordinate, ...)	

•  Criteria adopted to establish dependency

relations 	

•  Criteria to identify heads and dependents	

Dependency Relations

•  Surface-oriented grammatical functions:
subject, object, adverbial, …	

•  Semantically oriented roles: agent, patient,
goal, …	

Problematic Constructions

•  Grammatical function words: syntactic versus
semantic heads	

•  Coordination: problematic in general	

Function words

Coordination

Dependency Graphs

•  A dependency structure can be defined as
a directed graph G, consisting of
– a set V of nodes (vertices),
– a set A of arcs (directed edges),
– a linear precedence order < on V (word

order).

Dependency Graphs

•  Labeled graphs:
– Nodes in V are labeled with word forms (and

annotation).
– Arcs in A are labeled with dependency types:

•  L={l1, . . . ,l|L|} is the set of permissible arc labels.
•  Every arc in A is a triple (i, j, k), representing a

dependency from wi to wj with label lk.

Dependency Parsing

•  The problem:
–  Input: Sentence x=w0, w1, …, wn with w0=root
– Output: Dependency graph G = (V, A) for x

where:
•  V={0, 1, . . . , n} is the vertex set,
•  A is the arc set, i.e., (i, j, k)∈A represents a

dependency from wi to wj with label lk∈L

