
Computational Linguistics: Introduction

Raffaella Bernardi

Contents First Last Prev Next J

1. Admin

Conformemente allart. 13 del Regolamento Generale sulla Protezione dei Dati (UE)
2016/679, si avvisa il pubblico che levento in corso, organizzato dal CIMeC (Uni-
versitá di Trento) nell’ambito dei suoi fini istituzionali, sará trasmesso in streaming
e audio/videoregistrato.

Chi non volesse apparire in audio o video deve tenere la telecamera ed il microfono
del proprio dispositivo in mute. Partecipando all’evento si accetta quanto sopra
descritto.

Il titolare del trattamento dei dati personali è lUniversità di Trento, con sede in via
Calepina 14, 38122 Trento. I dati di contatto del Responsabile della Protezione Dati
sono: rpd@unitn.it, Via Verdi 8, 38122 Trento.

Contents First Last Prev Next J

2. Introduction

I Modality: Blended. We will have a mixture of in presence classes combined with online
classes.

. in presence blended classes: we will meet in Rovereto with those who can be phisically
present and in zoom with those who cannot. The lectures will be registered and uploaded
in Moodle afterwords for those who cannot attend the lecture at all.

. online lectures: short video-lessons (uploaded in Moodle) and alive online meetings via
zoom. The online syncronous meetings are scheduled late in the pm and will give the
opportunity to meet with all the fellow students.

I Office hours: by appointment preferebly before or after classes.

I Course Materials: Slides, SLP text book, scientific papers

I Text Book D. Jurasfky and J. H. Martin Speech and Language Processing.

I Url: http://www.disi.unitn.it/~bernardi/Courses/CompLing/20-21.html

Contents First Last Prev Next J

http://www.disi.unitn.it/~bernardi/Courses/CompLing/20-21.html

3. Rough Schedule

I 5 classes on Syntax (Sep-Oct): Formal Grammars of English and Parsing

I 11 classes on Semantics (Oct-Nov): Formal Semantics, Distributional Seman-
tics, The Representation of Sentence Meaning, Syntax-Semantics interface

I 1 class on Evaluation methods and metrics (Nov)

I 3 classes on Multimodal Models (Nov): Language and Vision

I 6 classes on cutting-edge topics related to those discussed through the program:
5 Reading Groups and 1 Guest Lecturer (Sep-Dec)

Contents First Last Prev Next J

4. Coordination wtih Luca Duccheschi’s course

Luca Ducceschi and I have coordinated our courses so that with him you have hands-
on experience on the concepts you study with me theoretically. To this end, we have
organized the courses into blocks.

I 23-30 September: Luca

I 1 and 2 October: me and Luca, resp.

I 5-9 October: me (syntax)

I 12-16 October: Luca

I 19-29 (with the exception of the 21, 26, 28): me (semantics)

I 30 Oct-2 Nov: Luca

I 4 Nov-3 December: me (sytax-semantics, evaluation, language and vision.)

Please, check the web page of the courses for updated information and further
details.

Contents First Last Prev Next J

5. Goals

1. provide students with an overview of the field with focus on the syntax-
semantics interface;

2. bring students to be aware on the one hand of several lexicalized formal gram-
mars, on the other hand of computational semantics models and be able
to combine some of them to capture natural language syntax-semantics in-
terface;

3. evaluate several applications with a special focus to Interactive Question An-
swering and Language and Vision Models;

4. make students acquainted with writing scientific reports.

All these objectives will help students understand how methods from computer
science, mathematics and statistics are applied to the modelling of natural language
and start being propositive for new ideas.

Contents First Last Prev Next J

6. Expected learning outcomes

At the end of the course students will be able to:

1. illustrate the main challanges addressed in the field, which are its consol-
idated results and which are the current research questions;

2. master, at introductory level, the basic rules of some formal grammars and of
formal and distributional semantics languages and their integration based on
the principle of compositionality;

3. compare approaches on computational linguistics tasks, in particular within
interactive question answering and language and vision integration;

4. apply interdisciplinary approaches to linguistics tasks and write a scientific
report on their research in LaTex.

Contents First Last Prev Next J

7. Teaching Methods

We will have

1. frontal classes (online and in presence), pen-and-pencil exercises, discussions
on papers lead by students (summary in LaTeX).

2. The exercises will help students better grasp the basic rules of lexicalized formal
grammar and formal and distributional semantics and their integration.

3. Students will be individually supervised on a project of their choice, to be
selected on the base of their background and interest, in one of the topics
discussed during the frontal classes. (suggestion: decide about this in early
November.)

4. Students will be supervised on the writing of a scientific report in LaTeX.

5. Students will present their project to their fellow students.

6. Through the courses, you will be given assignments (See the web page.)

Contents First Last Prev Next J

8. Grading NB. I will revise this by next class

The final grade will be computed by the two grades below

1. Assignments (xx %): quizz, comments about papers.

2. Written Exam (xx%): exercises on Syntax, Semantics and their interface.

3. Term paper (xx%): You are to complete a project on topics of your choice
upon agreement with me. The term paper has to be sent by mail to me by the
day of the written exam. During the last classes, we will have project proposals
presentations.

4. Term paper expectation In the project report, students will show they are
able to compare approaches to computational linguistics tasks. The term paper
must present an open problem in the CL field, review the relevant SoA and
describe a proposal to address the problem or report about a project on it.
It is meant to verify that students are able to read and understand technical
works in computational linguistics, and to apply the relevant knowledge in a
critical manner, showing they have learned how to reason in an interdisciplinary
setting and write a scientific report in LaTeX.

Contents First Last Prev Next J

9. Your background

Your background:

I BSc in Comp. Science vs. Humanities?

I Logic (PL?, FoL?)?

I Formal Semantics, Distributional Semantics (Vector Space Semantics)?

I Programming skills? Python?

I LaTeX?

Pool: http://etc.ch/WssB

Contents First Last Prev Next J

http://etc.ch/WssB

10. What do you know/think of Computational

Linguistics

I What do you think is Computational Linguistics?

I Which disciplines are involved?

I Why do you think people are interested in CL?

I Why are you interested in CL?

https://answergarden.ch/share/1404021

Contents First Last Prev Next J

https://answergarden.ch/share/1404021

11. Goals of Computational Linguistics

I Ultimate goal: To build computer systems that perform as well at using
natural language as humans do.

I Immediate goal To build computer systems that can process text and speech
more intelligently.

where, NL (Natural Language) is the language that people use to communicate
with one another and process means to analyze.

Contents First Last Prev Next J

Contents First Last Prev Next J

12. Quite a lot has been reached

Contents First Last Prev Next J

Contents First Last Prev Next J

13. Why computational models of NL

There are two motivations for developing computational models:

I Scientific: To obtain a better understanding of how language works. Com-
putational models may provide very specific predictions about human behavior
that can then be explored by the psycholinguist.

I Technological: natural language processing capabilities would revolutionize
the way computers are used. Computers that could understand natural lan-
guage could access to all human knowledge. Moreover, natural language
interfaces to computers would allow complex systems to be accessible to ev-
eryone. In this case, it does not matter if the model used reflects the way
humans process language. It only matters that it works.

We are interested in linguistically motivated computational models of lan-
guage understanding and production that can be shown to perform well in specific
example domains.

Contents First Last Prev Next J

14.1. Ambiguity: Phonology

Phonology: It concerns how words are related to the sounds that realize them. It’s
important for speech-based systems.

1. ”I scream”

2. ”ice cream”

14.2. Ambiguity: Morphology

Morphology: It’s about the inner structure of words. It concerns how words are
built up from smaller meaning-bearing units.

1. Unionized (characterized by the presence of labor unions)

2. un-ionized in chemistry

Contents First Last Prev Next J

14.3. Ambiguity: Syntax

Syntax: It concerns sentence structure. Different syntactic structure implies differ-
ent interpretation.

1. I saw the man with the telescope

I [I[[saw]v[the man]np[with the telescope]pp]vp]s [(I have the telescope)]

I [I[[saw]v[[the man]np[with the telescope]pp]np]vp]s [(the man has the telescope)]

2. Visiting relatives can be tiring.

Contents First Last Prev Next J

14.4. Ambiguity: Semantics

Semantics: It concerns what words mean and how these meanings combine to form
sentence meanings.

1. Visiting relatives can be tiring.

2. Visiting museums can be tiring.

Same set of possible syntactic structures for this sentence. But the meaning of
museums makes only one of them plausible.

Contents First Last Prev Next J

14.5. Ambiguity: Discourse

Discourse: It concerns how the immediately preceding sentences affect the inter-
pretation of the next sentence

1. Merck & Co. formed a joint venture with Ache Group, of Brazil. It will
. . .?

2. Merck & Co. formed a joint venture with Ache Group, of Brazil. Iti will be
called Prodome Ltd.

(a joint venture!i)

3. Merck & Co. formed a joint venture with Ache Group, of Brazil. Iti will own
50% of the new company to be called Prodome Ltd.

(Merck & Co.i!)

4. Merck & Co. formed a joint venture with Ache Group, of Brazil. Iti had
previously teamed up with Merck in two unsuccessful pharmaceutical ventures.

(Ache Groupi!)

Contents First Last Prev Next J

15. Challenges (Slide by F. Segond (Xerox))

January, 14-15, 2008Page 20 CACAO-Kick-off

can't, $22.50, New York, so-
called, a priori
Buy, bought, bought, cat, cats

The old train...
 (“(The old train) left (the station)")
vs (“(The old)train (the young)").

I know more beautiful women
than Julia Roberts.
"I know women more beautiful
than Julia Roberts" or "I know
more beautiful women than Julia
Roberts does".

The boy sees the girl on the hill
with the telescope

How to split
sentences
into words?

How to
link words
together?

How to make sense

of a phrase/how to
group wordstogether?

Whoknowswhat?

The difficulty

Mary takes a glass of wine

Mary takes a gym course

Mary takes a husband

actor

experiencer

?

Contents First Last Prev Next J

16. NLP Systems

1. Tokenization [Luca]

2. PoS tagging [Luca]

3. Morphological analysis

4. Shallow parsing

5. Deep parsing

6. Semantic representation (of sentences)

7. Discourse representation

Tokenization It consists in dividing the sequence of symbols in minimum units called
tokens (words, date, numbers, punctuation etc..). Many difficulties: e.g.

Sig. Rossi vs. 05.10.05 vs. www.unitn.it;

given up (multi words 1 token).

Contents First Last Prev Next J

17. Words: Classes

Traditionally, linguists classify words into different categories:

I Categories: words are said to belong to classes/categories. The main cat-
egories are nouns (n), verbs (v), adjectives (adj), articles (art) and adverbs
(adv).

The class of words can be divided into two broad supercategories:

1. Closed Class: Those that have relatively fixed membership. E.g. prepositions,
pronouns, particles, quantifiers, coordination, articles.

2. Open Class: nouns, verbs, adjectives, adverbs.

Contents First Last Prev Next J

18. Words: Classes (Cont’d)

A word in any of the four open classes can be used to form the basis for a phrase.
This word is called the head of the phrase and indicates the type of thing, activity,
or quality that the phrase describes. E.g. “dog” is the head in: “The dog”, “the
small dog”, “the small dog that I saw”.

I Constituents: Groups of categories may form a single unit or phrase called
constituents. The main phrases are noun phrases (np), verb phrases (vp),
prepositional phrases (pp). Noun phrases for instance are: “she”; “Michael”;
“Rajeev Goré”; “the house”; “a young two-year child”.

Tests like substitution help decide whether words form constituents.

Can you think of another test?

Contents First Last Prev Next J

18.1. Applications of PoS tagging

More recently, linguists have defined classes of words, called Part-of-Speech (PoS)
tagsets with much larger numbers of word classes. PoS are used to label words in
a given collection of written texts (Corpus). These labels turn out to be useful in
several language processing applications.

I Speech synthesis: A word’s PoS can tell us something about how the word is
pronounced. E.g. “content” can be a noun or an adjective, and it’s pronounced
differently: CONtent (noun) vs. conTENT (adjective).

I Information Retrieval: A word’s PoS can tell us which morphological affixes
it can take, or it can help selecting out nouns or other important words from a
document.

I Theoretical Linguistics: Words’ PoS can help finding instances or frequen-
cies of particular constructions in large corpora.

Contents First Last Prev Next J

19. Morphology

Morphology is the study of how words are built up from smaller meaning-bearing
units, morphemes. It concerns the inner structure of words.

For instance,

I fog: it’s one morphem

I cats: it consists of two morphemes: cat + -s.

Contents First Last Prev Next J

19.1. Morphemes

Morphemes are divided into:

1. stems: they are the main morpheme of the word, supplying the main meaning.

2. affixes: they add additional meanings of various kinds. They are further
divided into:

I prefixes: precede the stem (English: unknown= un + known)

I suffixes: follow the stem (English: eats= eat + -s)

I circumfixes: do both (German: gesagt (said)= ge + sag + t)

I infixes: are inserted inside the stem (Bontoc -Philippines - fikas (strong),
fumikas (to be strong))

A word can have more than one affixes (e.g. re+write+s, unbelievably= believe
(stem), un-, -able, -ly).

Contents First Last Prev Next J

19.2. Ways of forming new words

There are two basic ways used to form new words:

1. Inflectional forms: It is the combination of a word stem with a grammatical
morpheme, usually resulting in a word of the same class as the original
stem, and usually filling some syntactic function like agreement. E.g. in En-
glish,

past tense on verbs is marked by the suffix “-ed”, form by “-s”, and participle
by “-ing”.

2. Derivational forms: It is the combination of a word stem with a grammat-
ical morpheme, usually resulting in a word of a different class, often with a
meaning hard to predict exactly. E.g.

Adverbs from noun: friendly from friend.

Noun from verbs: killer from kill.

Adjectives from nouns: “computational” from “computation”, “unreal” from
“real”.

Contents First Last Prev Next J

20. Computational Morphology

We want to build a system able to provide the stem and the affixes given a word as
input (e.g. cats→ {cat +N +PL}), or able to generate all the possible words made
of a given stem (e.g. cat → {cats, cat}). To this end, we first of all need to have a
way to formally represent Morphology Theory studied by Linguists.

20.1. Modules

To build a morphological recognizer/generator, we’ll need at least the following:

lexicon: the list of stems and affixes, together with basic information about them
(e.g. Noun stem or Verb stem).

morphotactics: the model of the morpheme ordering, e.g. English plural mor-
pheme follows the noun rather than preceding it.

orthographic rules: spelling rules used to model the changes that occur in a
word, e.g. city becomes cities, i.e. “y” “ie”.

Contents First Last Prev Next J

20.2. The Lexicon and Morphotactics

Lexicon: It’s a repository of words. Having an explicit list of every word is impos-
sible, hence the lexicon is structured with a list of each of the stems and affixes of
the language.

Morphotactics: One of the most common way to model morphotactics is by means
of Finite State Automata (FSA).

Contents First Last Prev Next J

21. FSA for Morphology Recognition/Generation

We have said that a language is a set of strings. An important operation on strings
is concatenation.

I At syntactic level, strings are words that are concatenated together to form
phrases.

I At morphological level, strings are morphemes that are concatenated to form
words. E.g.

Stem Language: {work, talk, walk}.
Suffix Language: {ε,−ed,−ing,−s}.

The concatenation of the Suffix language after the Stem language, gives:

{work, worked, working, works, talk, talked, talking, talks,
walk, walked, walking, walks}

Contents First Last Prev Next J

21.1. FSA for English Inflectional Morphology

Let’s build an FSA that recognizes English nominal inflection. Our lexicon is:

reg-stem plural pl-irreg-stem sing-irreg-stem
fox -s geese goose
cat sheep sheep
dog mice mouse

Contents First Last Prev Next J

21.2. FSA for English Derivational Morphology

Let’s build an FSA that recognizes English adjectives. Our lexicon is:

adj-root1 adj-root2 Suffix-1-2 Suffix-1 Affix-1
clear big -er -ly un-
happy cool -est
real

Contents First Last Prev Next J

22. Background notions: Formal Language & FSA

I A formal language is a set of strings. E.g. {a, b, c}, {the, student, } or {student,−s}.

I Strings are by definition finite in length.

I The language accepted (or recognized) by an FSA is the set of all strings it
recognizes when used in recognition mode.

I The language generated by an FSA is the set of all strings it can generate when
used in generation mode.

I The language accepted and the language generated by an FSA are exactly the
same.

I FSA recognize/generate Regular Languages [you will use RL with Luca].

Contents First Last Prev Next J

22.1. Finite State Automata

A finite state generator is a simple computing machine that outputs a sequence
of symbols.

It starts in some initial state and then tries to reach a final state by making
transitions from one state to another.

Every time it makes such a transition it emits (or writes or generates) a symbol.

It has to keep doing this until it reaches a final state; before that it cannot stop.

Contents First Last Prev Next J

22.1.1. FSA as directed graph Finite state generators can be thought of as
directed graphs. And in fact finite state generators are usually drawn as directed
graphs. Here is our laughing machine as we will from now on draw finite state
generators:

The nodes of the graph are the states of the generator. We have numbered them,
so that it is easier to talk about them. The arcs of the graph are the transitions,
and the labels of the arcs are the symbols that the machine emits. A double circle
indicates that this state is a final state and the one with the black triangle is the
start.

Contents First Last Prev Next J

22.1.2. Finite State Recognizer Finite state recognizers are simple comput-
ing machines that read (or at least try to read) a sequence of symbols from
an input tape. That seems to be only a small difference, and in fact, finite state
generators and finite state recognizers are exactly the same kind of machine. Just
that we are using them to output symbols in one case and to read symbols in the
other case.

An FSA recognizes (or accepts) a string of symbols if starting in an intial state it
can read in the symbols one after the other while making transitions from one state
to another such that the transition reading in the last symbol takes the machine
into a final state.

That means an FSA fails to recognize a string if:

I it cannot reach a final state; or

I it can reach a final state, but when it does there are still unread symbols left
over.

Contents First Last Prev Next J

22.1.3. Finite State Automata Try to think of what language is recognized
or generated by the FSA below.

Contents First Last Prev Next J

22.1.4. Finite State Automata with jumps

It has a strange transition from state 3 to state 1 which is reading/emitting #. We
will call transitions of this type jump arcs (or ε transitions). Jump arcs let us
jump from one state to another without emitting or reading a symbol. So, #
is really just there to indicate that this is a jump arc and the machine is not reading
or writing anything when making this transition.

This FSA accepts/generates the same language as our first laughing machine, namely
sequences of ha followed by a !. Try it yourself.

Contents First Last Prev Next J

22.1.5. Important properties of FSA

I All in all, finite state generators can only have a finite number of different
states, that’s where the name comes from.

I Another important property of finite state generators is that they only know
the state they are currently in. That means they cannot look ahead at the
states that come and also don’t have any memory of the states they have been
in before or the symbols that they have emitted.

I An FSA can have several intial and final states (it must have at least one initial
and one final state, though).

Contents First Last Prev Next J

22.2. Regular Languages

Recall: V ∗ denotes the set of all strings formed over the alphabet V . A∗ denotes
the set of all strings obtained by concatenating strings in A in all possible ways.

Given an alphabet V ,

1. {} is a regular language

2. For any string x ∈ V ∗, {x} is a regular language.

3. If A and B are regular languages, so is A ∪B.

4. If A and B are regular languages, so is AB.

5. If A is a regular language, so is A∗.

6. Nothing else is a regular language.

Examples For example, let V = {a, b, c}. Then since aab and cc are members of V ∗

by 2, {aab} and {cc} are regular languages. By 3, so is their union, {aab, cc}. By 4,
so is their concatenation {aabcc}. Likewise, by 5 {aab}∗ {cc}∗ are regular languages.

Contents First Last Prev Next J

22.2.1. Pumping Lemma For instance, a non-regular language is, e.g., L =
{anbn | n > 0}. More generally, FSA cannot generate/recognize balanced open and
closed parentheses.

You can prove that L is not a regular language by means of the Pumping Lemma.

Roughly note that with FSA you cannot record (no memory!) any arbitrary num-
ber of a’s you have read, hence you cannot control that the number of a’s and b’s
has to be the same. In other words, you cannot account for the fact that there exists
a relation of dependency between an and bn.

Contents First Last Prev Next J

23. Recognizers vs. Parsers

We have seen that we can give a word to a recognizer and the recognizer will say
“yes” or “no”. But often that’s not enough: in addition to knowing that something
is accepted by a certain FSA, we would like to have an explanation of why it was
accepted. Finite State Parsers give us that kind of explanation by returning the
sequence of transitions that was made.

This distinction between recognizers and parsers is a standard one:

I Recognizers just say “yes” or “no”, while

I Parsers also give an analysis of the input (e.g. a parse tree).

This distinction does not only apply to FSA, but also to all kinds of machines
that check whether some input belongs to a language and we will make use of it
throughout the course.

Contents First Last Prev Next J

23.1. Morphological Parsers

The goal of morphological parsing is to find out what morphemes a given word is
built from. For example, a morphological parser should be able to tell us that the
word “cats” is the plural form of the noun stem “cat”, and that the word “mice” is
the plural form of the noun stem “mouse”.

So, given the string “cats” as input, a morphological parser should produce an
output that looks similar to {cat N PL}.

Contents First Last Prev Next J

24. What are FSA good for in CL?

Finite-state techniques are widely used today in both research and industry for natural-
language processing. The software implementations and documentation are improving
steadily, and they are increasingly available. In CL they are mostly “lower-level” natural
language processing:

I Tokenization

I Spelling checking/correction

I Phonology

I Morphological Analysis/Generation

I Part-of-Speech Tagging

I “Shallow” Syntactic Parsing

Finite-state techniques cannot do everything; but for tasks where they do apply, they are
extremely attractive. In fact, the flip side of their expressive weakness being that they
usually behave very well computationally. If you can find a solution based on finite state
methods, your implementation will probably be efficient.

Contents First Last Prev Next J

25. Conclusion

I Today we have introduced CL

I Next classes with Luca on tokenization and regular expressions.

I With me: On Thursday 1st of October, 18:00-19:30 online Reading Group;

I On Monday 5th of October we will start the block of classes on Syntax

Next Assignment GP1: in presence-students and GP2: by remote-students.

I Read the paper by Tenney et al ACL 20219 (GP1) and by Jawahar et al ACL
2019 (GP2),

I annotate it with questions and comments -by the 28.09.2020 in https://

perusall.com/. I will give you access to it through Moodle.

I Prepare a summary for the other group to be presented in the online-class (1st
of October).

Contents First Last Prev Next J

https://perusall.com/
https://perusall.com/

	Admin
	Introduction
	Rough Schedule
	Coordination wtih Luca Duccheschi's course
	Goals
	Expected learning outcomes
	Teaching Methods
	Grading NB. I will revise this by next class
	Your background
	What do you know/think of Computational Linguistics
	Goals of Computational Linguistics
	Quite a lot has been reached
	Why computational models of NL
	Ambiguity: Phonology
	Ambiguity: Morphology
	Ambiguity: Syntax
	Ambiguity: Semantics
	Ambiguity: Discourse
	Challenges (Slide by F. Segond (Xerox))
	NLP Systems
	Words: Classes
	Words: Classes (Cont'd)
	Applications of PoS tagging

	Morphology
	Morphemes
	Ways of forming new words

	Computational Morphology
	Modules
	The Lexicon and Morphotactics

	FSA for Morphology Recognition/Generation
	FSA for English Inflectional Morphology
	FSA for English Derivational Morphology

	Background notions: Formal Language & FSA
	Finite State Automata
	FSA as directed graph
	Finite State Recognizer
	Finite State Automata
	Finite State Automata with jumps
	Important properties of FSA

	Regular Languages
	Pumping Lemma

	Recognizers vs. Parsers
	Morphological Parsers

	What are FSA good for in CL?
	Conclusion

