
Computational Linguistics:
Formal Semantics and Compositionality

Raffaella Bernardi

University of Trento

Contents First Last Prev Next J

Contents

1 Seen to be done . 3
2 Reminder: Semantics is model-theoretic . 4
3 Reminder: A Model of PL . 5

3.1 Frege: From words to sentences . 6
4 Building Meaning Representations . 7
5 Lambda Calculus . 8

5.1 Lambda Calculus: Function and lambda terms 9
5.2 Lambda-terms: Examples . 10
5.3 Functional Application . 11
5.4 β-conversion . 12
5.5 Exercise . 13
5.6 α-conversion . 14

6 Lambda-Terms Interpretations . 15
6.1 Models, Domains, Interpretation . 16
6.2 Lambda-calculus: some remarks . 17

7 Lambda Terms represent functions . 18
7.1 Exercises: Lambda terms . 19

Contents First Last Prev Next J

1. Seen to be done

We have seen:

I how lexical meaning is represented by sets.

I how to go from a set-theoretical representation to a functional one.

I the semantic types of the domain of interepretation.

Today we are going to introduce how to build the meaning representation of a
sentence out of the meaning representation of words.

Contents First Last Prev Next J

2. Reminder: Semantics is model-theoretic

The focus is on meaning as “extension”:

“The extension of an expression is the set of things it extends to, or applies
to” (Wikipedia)

Ingredients:

I A model of the world

I the model consists of sets

I words in a language refer or denote parts of the model

I a proposition is true iff it corresponds to state of affairs in the model.

Contents First Last Prev Next J

3. Reminder: A Model of PL

A model consists of two pieces of information:

I which collection of atomic propositions we are talking about (domain, D),

I and for each formula which is the appropriate semantic value, this is done by
means of a function called interpretation function (I).

Thus a model M is a pair: (D, I).

Correction of Exercises on set-theoretical vs functional meaning.

Contents First Last Prev Next J

3.1. Frege: From words to sentences

Complete vs. Incomplete Expressions Frege made the following distinction:

I A sentence is a complete expression, it’s reference is the truth value.

I A proper name stands for an object and is represented by a constant. It’s a
complete expression.

I A predicate is an incomplete expression, it needs an object to become com-
plete. It is represented by a function. Eg. “left” needs to be completed by
“Raj” to become the complete expression “Raj left”.

Principle of Compositionality: The meaning of a sentence is given by the mean-
ing of its parts and by the compositionality rules. This holds both at the reference
and sense level.

Contents First Last Prev Next J

4. Building Meaning Representations

To build a meaning representation we need to fulfill three tasks:

Task 1 Specify a reasonable syntax for the natural language fragment of interest.

Task 2 Specify semantic representations for the lexical items.

Task 3 Specify the translation of constituents compositionally. That is, we
need to specify the translation of such expressions in terms of the translation
of their parts, parts here referring to the substructure given to us by the syntax.

Moreover, when interested in Computational Semantics, all three tasks need to be
carried out in a way that leads to computational implementation naturally.

We have looked at Task 1 in lecture 2 (formal grammars).

Today we will start looking at the other two tasks.

Contents First Last Prev Next J

5. Lambda Calculus

FOL augmented with Lambda calculus can capture the “how” and accomplish tasks
2 and 3.

I It has a variable binding operators λ. Occurrences of variables bound by λ
should be thought of as place-holders for missing information: they explicitly
mark where we should substitute the various bits and pieces obtained in the
course of semantic construction.

I An operation called β-conversion performs the required substitutions.

Contents First Last Prev Next J

5.1. Lambda Calculus: Function and lambda terms

Function f : X → Y . And f(x) = y e.g. SUM(x, 2) if x = 5, SUM(5, 2) = 7.

I λx.x

I λx.(x+ 2) [SUM(x,2)]

I (λx.(x+ 2))︸ ︷︷ ︸
function

5︸︷︷︸
argument

I (λx.(x+ 2))︸ ︷︷ ︸
function

5︸︷︷︸
argument

= 5 + 2

I ((λy.λx.(x+ y)) 5︸︷︷︸
argument2

) 2︸︷︷︸
argument1

= (λx.(x+ 5)) 2 = 2 + 5

I λy.λx.(x+ y) = λ(x, y).(x+ y)

Contents First Last Prev Next J

5.2. Lambda-terms: Examples

Here is an example of lambda terms:

λx.left(x)

The prefix λx. binds the occurrence of x in student(x). We say it abstracts over the
variable x. The purpose of abstracting over variables is to mark the slots where we want
the substitutions to be made.

To glue vincent with “left” we need to apply the lambda-term representing “left” to the
one representing “Vincent”:

λx.left(x)(vincent)

Such expressions are called functional applications, the left-hand expression is called
the functor and the right-hand expression is called the argument. The functor is applied
to the argument. Intuitively it says: fill all the placeholders in the functor by occurrences
of the term vincent.

The substitution is performed by means of β-conversion, obtaining left(vincent).

Contents First Last Prev Next J

5.3. Functional Application

Summing up:

I FA has the form: Functor(Argument). E.g. (λx.love(x,mary))(john)

I FA triggers a very simple operation: Replace the λ-bound variable by the
argument. E.g. (λx.love(x,mary))(john)⇒ love(john,mary)

Exercise 3.

Contents First Last Prev Next J

5.4. β-conversion

Summing up:

1. Strip off the λ-prefix,

2. Remove the argument,

3. Replace all occurences of the λ-bound variable by the argument.

For instance,

1. (λx.love(x,mary))(john)

2. love(x,mary)(john)

3. love(x,mary)

4. love(john,mary)

Contents First Last Prev Next J

5.5. Exercise

Give the lambda term representing a transitive verb.

(a) Build the meaning representation of “John saw Mary” starting from:

I John: j

I Mary: m

I saw: λx.λy.saw(y, x)

(b) Build the parse tree of the sentence by means the bottom-up method.

(c) Compare what you have done to assembly the meaning representation with the
way you have built the tree.

Contents First Last Prev Next J

5.6. α-conversion

Warning: Accidental bounds, e.g. λx.λy.Love(y, x)(y) gives λy.Love(y, y). We need
to rename variables before performing β-conversion.

α-conversion is the process used in the λ-calculus to rename bound variables. For
instance, we obtain

λx.λy.Love(y, x) from λz.λy.Love(y, z).

When working with lambda calculus we always α-covert before carrying out β-
conversion. In particular, we always rename all the bound variables in the functor
so they are distinct from all the variables in the argument. This prevents accidental
binding.

Contents First Last Prev Next J

6. Lambda-Terms Interpretations

We’ve seen that a Model is a pair consisting of a domain (D) and an interpretation
function (I).

I In the case of FOL we had only one domain, namely the one of the ob-
jects/entities we were reasoning about. Similarly, we only had one type of
variables. Moreover, we were only able to speak of propositions/clauses.

I λ-terms speak of functions and we’ve used also variables standing for func-
tions. Therefore, we need a more complex concept of interpretation, or better
a more complex concept of domain to provide the fine-grained distinction
among the objects we are interested in: truth values, entities and functions.

I For this reason, the λ-calculus is of Higher Order.

Contents First Last Prev Next J

6.1. Models, Domains, Interpretation

In order to interpret meaning representations expressed in FOL augmented with λ,
the following facts are essential:

I Sentences: Sentences can be thought of as referring to their truth value, hence they
denote in the the domain Dt = {1, 0}.

I Entities: Entities can be represented as constants denoting in the domain De, e.g.
De = {john, vincent, mary}

I Functions: The other natural language expressions can be seen as incomplete sen-
tences and can be interpreted as boolean functions (i.e. functions yielding a truth
value). They denote on functional domains DDa

b and are represented by functional
terms of type (a→ b).

For instance “walks” misses the subject (of type e) to yield a sentence (t).

. denotes in DDe
t

. is of type (e→ t),

. is represented by the term λxe(walk(x))t

Contents First Last Prev Next J

6.2. Lambda-calculus: some remarks

The pure lambda calculus is a theory of functions as rules invented around 1930
by Church. It has more recently been applied in Computer Science for instance in
“Semantics of Programming Languages”.

In Formal Linguistics we are mostly interested in lambda conversion and abstraction.
Moreover, we work only with typed-lambda calculus and even more, only with a
fragment of it.

The types are the ones we have seen above labeling the domains, namely:

I e and t are types.

I If a and b are types, then (a→ b) is a type.

Contents First Last Prev Next J

7. Lambda Terms represent functions

For instance “walk” is a set of entities (those entities which walk), hence it’s a
function:

I denotes in DDe
t

I is of type (e→ t),

I is represented by the term λxe(walk(x))t

De

lori
alex
sara

[[walk]] = {lori}
1
0−→

−→
−→

Dt

Contents First Last Prev Next J

7.1. Exercises: Lambda terms

1. Build a model for a situation of your choice. Specify the domains of interpreta-
tion, the set-theoretical representation of words, and their corresponding typed
lambda terms.

2. If an intransitive verb (e.g. “walk”) is represented by a unary-function, a transi-
tive verb (e.g. “know”) by a binary-function, what is the function representing
a ditransitive verb (e.g. “gave”)?

3. What could be the meaning representation of an adjective (e.g. “red”)?

Contents First Last Prev Next J

	Seen to be done
	Reminder: Semantics is model-theoretic
	Reminder: A Model of PL
	Frege: From words to sentences

	Building Meaning Representations
	Lambda Calculus
	Lambda Calculus: Function and lambda terms
	Lambda-terms: Examples
	Functional Application
	-conversion
	Exercise
	-conversion

	Lambda-Terms Interpretations
	Models, Domains, Interpretation
	Lambda-calculus: some remarks

	Lambda Terms represent functions
	Exercises: Lambda terms

