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Why Parsing?
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Why Parsing?

For Whom?
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For Whom?

Researchers working on syntax or related topics within other
traditions

Researchers and application developers interested in using
parsers as components in larger systems
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Two views of grammatical structure

So far (a.o.): Constituency structure (a.k.a. phrase structure -
CFGs)

Today: Dependency structure
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Today

1 Introduction

2 Transition-based parsing

3 Evaluation
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Outline

1 Introduction
Introduction to UD

2 Transition-based parsing

3 Evaluation
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The notion of dependency

In a dependency grammar, syntactic structures consist of words that
are linked pairwise by relations called dependencies.

The following slides are based on a tutorial by J.Nivre et al: http:

//universaldependencies.org/eacl17tutorial/intro.pdf
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Naming nodes in a dependency

rel(head,dep)

head vs dependent

governor vs modifier

regent vs subordinate

parent vs child

In the convention we use, dependency edges go from head to
dependent: nsubj(runs,He).

He runs

nsubj
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Example

“They ate the pizza with anchovies”
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Dependency Trees: Universal dependencies

“They ate the pizza with anchovies”

They ate the pizza with anchovies

nsubj

dobj

det

nmod

case

They ate the pizza with anchovies

nsubj

dobj

det

nmod

case
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Outline

1 Introduction

2 Transition-based parsing
Choosing the Right Actions
Representing configurations using feature templates

3 Evaluation

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 28 / 77



What is Transition-based Parsing?

One of the two leading approaches for dependency parsing

Approach 1: Transition-based parsing: local decisions
Approach 2: Graph-based parsing: global decision (find
globally best tree; computationally more expensive; we will not
cover this)
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Why Transition-based Parsing?

left to right: similar to how the human brain does it

in recent years: state-of-the-art accuracy

very fast

simple

flexible: also suitable for producing phrase-structure trees, CCG
derivations, semantic representations... (see next lectures)

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 30 / 77



Transition-based Parsing: How? Intuition:

Read sentence word by word, left to right

Build up the dependency tree one word at a time:

after each word, look at the current parser configuration
select a parser operation from a set of operations consulting a
machine-learned classifier
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What is a parser configuration?

Configuration:

Buffer B (words left, at the start entire sentence)

Stack S (last in, first out)

Relations R (dependency edges predicted so far, a partial parse)
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Transition-based parsing

Configuration:

Buffer B (words left, at the start entire sentence)
Stack S (last in, first out)
Relations R (dependency edges predicted so far, a partial parse)

Configuration C = S ,B ,R

Initial configuration: empty stack, all words on buffer, empty R

Final configuration: stack, empty buffer, all edges are in R

Parser does a search through the space of possible configurations
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Basic actions (simplified)

The parser has 3 basic operations (other variants possible):

Shift: Move a word from the buffer to the stack
Left: Create an edge to the left
Right: Create an edge to the right

(This transition system with 3 operations is called arc-standard)
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Basic actions (details)

The parser has 3 basic operations (other variants possible):

Shift: Move a word from the buffer to the stack
(S , i |j |B,A) → (S |i , j |B,A)
Left: Create an edge to the left
(S |i |j ,B,A) → (S |j ,B,A ∪ j → i) [create an edge from j to i,
where j is the first and i the second node from the top of the
stack; in addition removes i from stack)]
Right: Create an edge to the right
(S |i |j ,B,A) → (S |i ,B,A ∪ i → j) [create an edge from i to j,
where i is the second and j the first node on top of the stack;
pops j from the stack]

Details in http:

//stp.lingfil.uu.se/~nivre/master/transition.pdf
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Transition-based Dependency Parsing

buffer = [’They’, ’ate’, ’the’, ’pizza’,

’with’, anchovies’]

stack = []

while len(buffer) > 0 or len(stack) > 1:

action = choose_action(buffer, stack)

if action == ’SHIFT’:

stack.append(i)

elif action == ’LEFT’:

parse.add(stack[-2], stack.pop())

elif action == ’RIGHT’:

parse.add(i, stack.pop())
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Example

Stack: [] Buffer: [They, ate, the, pizza, with, anchovies]
R: []
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Example

Stack: [They] Buffer: [ate, the, pizza, with, anchovies]
R: []

SHIFT,
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Example

Stack: [They, ate] Buffer: [the, pizza, with, anchovies]
R: []

SHIFT,SHIFT
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Example

Stack: [ate] Buffer: [the, pizza, with, anchovies]
R: [ate → They]

SHIFT,SHIFT,Left,
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Example

Stack: [ate, the] Buffer: [pizza, with, anchovies]
R: [ate → They]

SHIFT,SHIFT,Left,SHIFT,
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Example

Stack: [ate, the, pizza] Buffer: [with, anchovies]
R: [ate → They]

SHIFT,SHIFT,Left,SHIFT,SHIFT,
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Example

Stack: [ate, pizza] Buffer: [with, anchovies]
R: [ate → They, pizza → the]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
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Example

Stack: [ate, pizza, with] Buffer: [anchovies]
R: [ate → They, pizza → the]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,
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Example
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Example

Stack: [ate, pizza,anchovies] Buffer: []
R: [ate → They, pizza → the, anchovies → with]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left
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Example

Stack: [ate, pizza] Buffer: []
R: [ate → They, pizza → the, anchovies → with, pizza → anchovies]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right
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Example

Stack: [ate] Buffer: []
R: [ate → They, pizza → the, anchovies → with, pizza → anchovies,
ate → pizza]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right,Right
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Example

Stack: [] Buffer: []
R: [ate → They, pizza → the, anchovies → with, pizza → anchovies,
ate → pizza, ROOT→ ate ]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right,Right,Right

R encodes our dependency tree:

They ate the pizza with anchovies
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How would we get the other parse tree?

They ate the pizza with anchovies

They ate the pizza with anchovies

Insight: each sequence of operations derives a dependency tree
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Back to our example - alternative

Stack: [ate, pizza] Buffer: [with, anchovies]
R: [ate → They, pizza → the]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
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Back to our example - alternative
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SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT,
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Back to our example - alternative

Stack: [ate] Buffer: []
R: [ate → They, pizza → the, ate → pizza, anchovies → with, ate →
anchovies]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT, SHIFT,
Left,Right

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 56 / 77



Back to our example - alternative

Stack: [] Buffer: []
R: [ate → They, pizza → the, ate → pizza, anchovies → with, ate →
anchovies, ROOT → ate]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT, SHIFT,
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Back to our example - alternative

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT, SHIFT,
Left,Right,Right

They ate the pizza with anchovies

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right,Right,Right

They ate the pizza with anchovies
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Back to our example - alternative

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT, SHIFT,
Left,Right,Right

They ate the pizza with anchovies

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right,Right,Right

They ate the pizza with anchovies
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Which Action to Choose?

def choose_action(stack, buffer):

# ???

Thanks to Kilian Evang for the basis of the following slides.
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Which Action to Choose?

stack: buffer:

They

ate the pizza with anchovies

Next action should be LEFT. But how does the parser know that?
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Look at Contextual Clues

E.g. word unigram features

stack: buffer:

They

ate the pizza with anchovies

Describe configuration in terms of features
’s_w0=pizza’ # word on top of stack
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Look at Contextual Clues - they get weights

E.g. part-of-speech bigram features

stack: buffer:

They

ate the pizza with anchovies

Look up “weights” for each possible action
weight[’s_p1=DET;s_p0=NOUN’][’SHIFT’] = -3

weight[’s_p1=DET;s_p0=NOUN’][’LEFT’] = 10

weight[’s_p1=DET;s_p0=NOUN][’RIGHT’] = -5
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In Practice: Many More Features

stack: buffer:

They

ate the pizza with anchovies

Sum up the weights for each possible action, choose the action with
the highest total.
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Where Do the Weights Come from?

need training data = sentences where correct actions are known

training = automatically find weights that lead to good parses

e.g. perceptron training
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Perceptron Training

start with all weights = 0

parse the training data

whenever the parser chooses the wrong action,

subtract 1 from the context weights for this action
add 1 to the context weights for the correct action

over time, parser makes fewer mistakes
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Perceptron Training: Example

stack: buffer:

They

ate the pizza with anchovies

E.g. LEFT is correct, parser chooses SHIFT.

Update:

weight[’s_w1=the’][’SHIFT’] -= 1

weight[’s_w1=the’][’LEFT’] += 1

weight[’s_p1=DET;s_p0=NOUN’][’SHIFT’] -= 1

weight[’s_p1=DET;s_p0=NOUN’][’LEFT’] += 1
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Choosing the Right Actions
Transition-based parsing

1 Introduction
Introduction to UD

2 Transition-based parsing
Choosing the Right Actions
Representing configurations using feature templates

3 Evaluation
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Summary

goal: automatically find syntactic structure

process sentences one word at a time

at each step, choose the right action

train parser using training data, features, perceptron training

simple and works well in practice
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Features - Example configuration:

United canceled the morning flights to Houston

Stack: [root, canceled, flights] Buffer: [to, Houston]
R: [canceled → United, flights → morning, flights → the]

Partial structure so far:

United canceled the morning flights to Houston

What is the next action?
How can we represent this parser state/configuration as features?
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Features - Get the basic elements:

(information from stack, buffer or R)
Stack: [root, canceled, flights] Buffer: [to, Houston]
R: [canceled → United, flights → morning, flights → the]

s_w0: flights

s_p0: NOUN

s_w1: canceled

s_p1: VERB

b_w0: to #buffer

context of top on stack: child1: the, child2: morning

valence of top of stack: 2
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Features - add features:

Stack: [root, canceled, flights] Buffer: [to, Houston]
R: [canceled → United, flights → morning, flights → the]

Add features (a unique string = unique feature):

# unigram

features.append((’s_w0=flights’,1))

features.append((’s_w1=canceled’,1))

# feature combinations

features.append((’s_w0=flights,s_p0=NOUN’, 1))

features.append((’s_w1=canceled,s_p1=VERB’, 1))

# add more!

Note1: always add features with value 1!
Note2: in the code you will do this with a format statement,
because the feature depends on the current configuration
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Outline

1 Introduction

2 Transition-based parsing

3 Evaluation
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Evaluation

Which proportion of edges is predicted correctly?

Label accuracy (LA): nodes with correct incoming edge/total
number of nodes

Unlabeled attachment score (UAS): nodes with correct
parent/total nodes

Labeled attachment score (LAS): nodes with correct parent
and edge label / total nodes
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Evaluation

gold:
Book me the flight to Houston

root

obj det

iobj

nmod

case

system:
Book me the flight to Houston

root

det

nmod

nsubj nmod

case

LAS (labeled): 4/6
UAS (unlabeled): 5/6
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Reference

https://web.stanford.edu/~jurafsky/slp3/13.pdf
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