
Dependency Parsing
Guest lecture in Computational Linguistics course

Barbara Plank
bplank.github.io

11-10-2018

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 1 / 77

Why Parsing?

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 2 / 77

Why Parsing?

For Whom?

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 3 / 77

For Whom?

Researchers working on syntax or related topics within other
traditions

Researchers and application developers interested in using
parsers as components in larger systems

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 4 / 77

Two views of grammatical structure

So far (a.o.): Constituency structure (a.k.a. phrase structure -
CFGs)

Today: Dependency structure

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 5 / 77

Today

1 Introduction

2 Transition-based parsing

3 Evaluation

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 6 / 77

Outline

1 Introduction
Introduction to UD

2 Transition-based parsing

3 Evaluation

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 7 / 77

The notion of dependency

In a dependency grammar, syntactic structures consist of words that
are linked pairwise by relations called dependencies.

The following slides are based on a tutorial by J.Nivre et al: http:

//universaldependencies.org/eacl17tutorial/intro.pdf

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 8 / 77

http://universaldependencies.org/eacl17tutorial/intro.pdf
http://universaldependencies.org/eacl17tutorial/intro.pdf

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 9 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 10 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 11 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 12 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 13 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 14 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 15 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 16 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 17 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 18 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 19 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 20 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 21 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 22 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 23 / 77

Introduction to UD
Introduction

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 24 / 77

Naming nodes in a dependency

rel(head,dep)

head vs dependent

governor vs modifier

regent vs subordinate

parent vs child

In the convention we use, dependency edges go from head to
dependent: nsubj(runs,He).

He runs

nsubj

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 25 / 77

Example

“They ate the pizza with anchovies”

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 26 / 77

Example

“They ate the pizza with anchovies”

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 26 / 77

Dependency Trees: Universal dependencies

“They ate the pizza with anchovies”

They ate the pizza with anchovies

nsubj

dobj

det

nmod

case

They ate the pizza with anchovies

nsubj

dobj

det

nmod

case

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 27 / 77

Outline

1 Introduction

2 Transition-based parsing
Choosing the Right Actions
Representing configurations using feature templates

3 Evaluation

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 28 / 77

What is Transition-based Parsing?

One of the two leading approaches for dependency parsing

Approach 1: Transition-based parsing: local decisions
Approach 2: Graph-based parsing: global decision (find
globally best tree; computationally more expensive; we will not
cover this)

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 29 / 77

What is Transition-based Parsing?

One of the two leading approaches for dependency parsing

Approach 1: Transition-based parsing: local decisions
Approach 2: Graph-based parsing: global decision (find
globally best tree; computationally more expensive; we will not
cover this)

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 29 / 77

Why Transition-based Parsing?

left to right: similar to how the human brain does it

in recent years: state-of-the-art accuracy

very fast

simple

flexible: also suitable for producing phrase-structure trees, CCG
derivations, semantic representations... (see next lectures)

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 30 / 77

Transition-based Parsing: How? Intuition:

Read sentence word by word, left to right

Build up the dependency tree one word at a time:

after each word, look at the current parser configuration
select a parser operation from a set of operations consulting a
machine-learned classifier

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 31 / 77

What is a parser configuration?

Configuration:

Buffer B (words left, at the start entire sentence)

Stack S (last in, first out)

Relations R (dependency edges predicted so far, a partial parse)

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 32 / 77

Transition-based parsing

Configuration:

Buffer B (words left, at the start entire sentence)
Stack S (last in, first out)
Relations R (dependency edges predicted so far, a partial parse)

Configuration C = S ,B ,R

Initial configuration: empty stack, all words on buffer, empty R

Final configuration: stack, empty buffer, all edges are in R

Parser does a search through the space of possible configurations

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 33 / 77

Transition-based parsing

Configuration:

Buffer B (words left, at the start entire sentence)
Stack S (last in, first out)
Relations R (dependency edges predicted so far, a partial parse)

Configuration C = S ,B ,R

Initial configuration: empty stack, all words on buffer, empty R

Final configuration: stack, empty buffer, all edges are in R

Parser does a search through the space of possible configurations

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 33 / 77

Transition-based parsing

Configuration:

Buffer B (words left, at the start entire sentence)
Stack S (last in, first out)
Relations R (dependency edges predicted so far, a partial parse)

Configuration C = S ,B ,R

Initial configuration: empty stack, all words on buffer, empty R

Final configuration: stack, empty buffer, all edges are in R

Parser does a search through the space of possible configurations

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 33 / 77

Basic actions (simplified)

The parser has 3 basic operations (other variants possible):

Shift: Move a word from the buffer to the stack
Left: Create an edge to the left
Right: Create an edge to the right

(This transition system with 3 operations is called arc-standard)

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 34 / 77

Basic actions (simplified)

The parser has 3 basic operations (other variants possible):

Shift: Move a word from the buffer to the stack
Left: Create an edge to the left
Right: Create an edge to the right

(This transition system with 3 operations is called arc-standard)

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 34 / 77

Basic actions (details)

The parser has 3 basic operations (other variants possible):

Shift: Move a word from the buffer to the stack
(S , i |j |B,A) → (S |i , j |B,A)
Left: Create an edge to the left
(S |i |j ,B,A) → (S |j ,B,A ∪ j → i) [create an edge from j to i,
where j is the first and i the second node from the top of the
stack; in addition removes i from stack)]
Right: Create an edge to the right
(S |i |j ,B,A) → (S |i ,B,A ∪ i → j) [create an edge from i to j,
where i is the second and j the first node on top of the stack;
pops j from the stack]

Details in http:

//stp.lingfil.uu.se/~nivre/master/transition.pdf

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 35 / 77

http://stp.lingfil.uu.se/~nivre/master/transition.pdf
http://stp.lingfil.uu.se/~nivre/master/transition.pdf

Transition-based Dependency Parsing

buffer = [’They’, ’ate’, ’the’, ’pizza’,

’with’, anchovies’]

stack = []

while len(buffer) > 0 or len(stack) > 1:

action = choose_action(buffer, stack)

if action == ’SHIFT’:

stack.append(i)

elif action == ’LEFT’:

parse.add(stack[-2], stack.pop())

elif action == ’RIGHT’:

parse.add(i, stack.pop())

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 36 / 77

Transition-based Dependency Parsing

buffer = [’They’, ’ate’, ’the’, ’pizza’,

’with’, anchovies’]

stack = []

while len(buffer) > 0 or len(stack) > 1:

action = choose_action(buffer, stack)

if action == ’SHIFT’:

stack.append(i)

elif action == ’LEFT’:

parse.add(stack[-2], stack.pop())

elif action == ’RIGHT’:

parse.add(i, stack.pop())

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 36 / 77

Example

Stack: [] Buffer: [They, ate, the, pizza, with, anchovies]
R: []

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 37 / 77

Example

Stack: [They] Buffer: [ate, the, pizza, with, anchovies]
R: []

SHIFT,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 38 / 77

Example

Stack: [They, ate] Buffer: [the, pizza, with, anchovies]
R: []

SHIFT,SHIFT

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 39 / 77

Example

Stack: [ate] Buffer: [the, pizza, with, anchovies]
R: [ate → They]

SHIFT,SHIFT,Left,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 40 / 77

Example

Stack: [ate, the] Buffer: [pizza, with, anchovies]
R: [ate → They]

SHIFT,SHIFT,Left,SHIFT,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 41 / 77

Example

Stack: [ate, the, pizza] Buffer: [with, anchovies]
R: [ate → They]

SHIFT,SHIFT,Left,SHIFT,SHIFT,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 42 / 77

Example

Stack: [ate, pizza] Buffer: [with, anchovies]
R: [ate → They, pizza → the]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 43 / 77

Example

Stack: [ate, pizza, with] Buffer: [anchovies]
R: [ate → They, pizza → the]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 44 / 77

Example

Stack: [ate, pizza, with,anchovies] Buffer: []
R: [ate → They, pizza → the]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 45 / 77

Example

Stack: [ate, pizza,anchovies] Buffer: []
R: [ate → They, pizza → the, anchovies → with]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 46 / 77

Example

Stack: [ate, pizza] Buffer: []
R: [ate → They, pizza → the, anchovies → with, pizza → anchovies]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 47 / 77

Example

Stack: [ate] Buffer: []
R: [ate → They, pizza → the, anchovies → with, pizza → anchovies,
ate → pizza]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right,Right

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 48 / 77

Example

Stack: [] Buffer: []
R: [ate → They, pizza → the, anchovies → with, pizza → anchovies,
ate → pizza, ROOT→ ate]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right,Right,Right

R encodes our dependency tree:

They ate the pizza with anchovies

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 49 / 77

Example

Stack: [] Buffer: []
R: [ate → They, pizza → the, anchovies → with, pizza → anchovies,
ate → pizza, ROOT→ ate]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right,Right,Right
R encodes our dependency tree:

They ate the pizza with anchovies

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 49 / 77

How would we get the other parse tree?

They ate the pizza with anchovies

They ate the pizza with anchovies

Insight: each sequence of operations derives a dependency tree

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 50 / 77

How would we get the other parse tree?

They ate the pizza with anchovies

They ate the pizza with anchovies

Insight: each sequence of operations derives a dependency tree

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 50 / 77

Back to our example - alternative

Stack: [ate, pizza] Buffer: [with, anchovies]
R: [ate → They, pizza → the]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 51 / 77

Back to our example - alternative

Stack: [ate] Buffer: [with, anchovies]
R: [ate → They, pizza → the, ate → pizza]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 52 / 77

Back to our example - alternative

Stack: [ate,with] Buffer: [anchovies]
R: [ate → They, pizza → the, ate → pizza]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 53 / 77

Back to our example - alternative

Stack: [ate,with,anchovies] Buffer: []
R: [ate → They, pizza → the, ate → pizza]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT, SHIFT,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 54 / 77

Back to our example - alternative

Stack: [ate,anchovies] Buffer: []
R: [ate → They, pizza → the, ate → pizza, anchovies → with]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT, SHIFT,
Left,

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 55 / 77

Back to our example - alternative

Stack: [ate] Buffer: []
R: [ate → They, pizza → the, ate → pizza, anchovies → with, ate →
anchovies]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT, SHIFT,
Left,Right

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 56 / 77

Back to our example - alternative

Stack: [] Buffer: []
R: [ate → They, pizza → the, ate → pizza, anchovies → with, ate →
anchovies, ROOT → ate]

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT, SHIFT,
Left,Right,Right

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 57 / 77

Back to our example - alternative

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT, SHIFT,
Left,Right,Right

They ate the pizza with anchovies

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right,Right,Right

They ate the pizza with anchovies

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 58 / 77

Back to our example - alternative

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,Right,SHIFT, SHIFT,
Left,Right,Right

They ate the pizza with anchovies

SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,SHIFT,SHIFT,Left,
Right,Right,Right

They ate the pizza with anchovies

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 58 / 77

Which Action to Choose?

def choose_action(stack, buffer):

???

Thanks to Kilian Evang for the basis of the following slides.

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 59 / 77

Which Action to Choose?

stack: buffer:

They

ate the pizza with anchovies

Next action should be LEFT. But how does the parser know that?

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 60 / 77

Which Action to Choose?

stack: buffer:

They

ate the pizza with anchovies

Next action should be LEFT. But how does the parser know that?

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 60 / 77

Look at Contextual Clues

E.g. word unigram features

stack: buffer:

They

ate the pizza with anchovies

Describe configuration in terms of features
’s_w0=pizza’ # word on top of stack

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 61 / 77

Look at Contextual Clues

E.g. word unigram features

stack: buffer:

They

ate the pizza with anchovies

Describe configuration in terms of features
’s_w0=pizza’ # word on top of stack

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 61 / 77

Look at Contextual Clues

E.g. word unigram features

stack: buffer:

They

ate the pizza with anchovies

Describe configuration in terms of features
’s_w0=pizza’ # word on top of stack

’s_p0=NOUN’ # pos tag on top of stack

’b_w0=with’ # first word on buffer

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 62 / 77

Look at Contextual Clues

E.g. word unigram features

stack: buffer:

They

ate the pizza with anchovies

Describe configuration in terms of features
’s_w0=pizza’ # word on top of stack

’s_p0=NOUN’ # pos tag on top of stack

’b_w0=with’ # first word on buffer

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 62 / 77

Look at Contextual Clues - they get weights

E.g. part-of-speech bigram features

stack: buffer:

They

ate the pizza with anchovies

Look up “weights” for each possible action
weight[’s_p1=DET;s_p0=NOUN’][’SHIFT’] = -3

weight[’s_p1=DET;s_p0=NOUN’][’LEFT’] = 10

weight[’s_p1=DET;s_p0=NOUN][’RIGHT’] = -5

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 63 / 77

Look at Contextual Clues - they get weights

E.g. part-of-speech bigram features

stack: buffer:

They

ate the pizza with anchovies

Look up “weights” for each possible action
weight[’s_p1=DET;s_p0=NOUN’][’SHIFT’] = -3

weight[’s_p1=DET;s_p0=NOUN’][’LEFT’] = 10

weight[’s_p1=DET;s_p0=NOUN][’RIGHT’] = -5

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 63 / 77

Look at Contextual Clues - they get weights

E.g. word unigram features

stack: buffer:

They

ate the pizza with anchovies

Look up “weights” for each possible action
weight[’s_w1=the’][’SHIFT’] = 5

weight[’s_w1=the’][’LEFT’] = 5

weight[’s_w1=the’][’RIGHT’] = -5

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 64 / 77

Look at Contextual Clues - they get weights

E.g. word unigram features

stack: buffer:

They

ate the pizza with anchovies

Look up “weights” for each possible action
weight[’s_w1=the’][’SHIFT’] = 5

weight[’s_w1=the’][’LEFT’] = 5

weight[’s_w1=the’][’RIGHT’] = -5

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 64 / 77

In Practice: Many More Features

stack: buffer:

They

ate the pizza with anchovies

Sum up the weights for each possible action, choose the action with
the highest total.

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 65 / 77

Where Do the Weights Come from?

need training data = sentences where correct actions are known

training = automatically find weights that lead to good parses

e.g. perceptron training

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 66 / 77

Perceptron Training

start with all weights = 0

parse the training data

whenever the parser chooses the wrong action,

subtract 1 from the context weights for this action
add 1 to the context weights for the correct action

over time, parser makes fewer mistakes

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 67 / 77

Perceptron Training: Example

stack: buffer:

They

ate the pizza with anchovies

E.g. LEFT is correct, parser chooses SHIFT.

Update:

weight[’s_w1=the’][’SHIFT’] -= 1

weight[’s_w1=the’][’LEFT’] += 1

weight[’s_p1=DET;s_p0=NOUN’][’SHIFT’] -= 1

weight[’s_p1=DET;s_p0=NOUN’][’LEFT’] += 1

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 68 / 77

Perceptron Training: Example

stack: buffer:

They

ate the pizza with anchovies

E.g. LEFT is correct, parser chooses SHIFT.
Update:

weight[’s_w1=the’][’SHIFT’] -= 1

weight[’s_w1=the’][’LEFT’] += 1

weight[’s_p1=DET;s_p0=NOUN’][’SHIFT’] -= 1

weight[’s_p1=DET;s_p0=NOUN’][’LEFT’] += 1

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 68 / 77

Choosing the Right Actions
Transition-based parsing

1 Introduction
Introduction to UD

2 Transition-based parsing
Choosing the Right Actions
Representing configurations using feature templates

3 Evaluation

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 69 / 77

Summary

goal: automatically find syntactic structure

process sentences one word at a time

at each step, choose the right action

train parser using training data, features, perceptron training

simple and works well in practice

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 70 / 77

Features - Example configuration:

United canceled the morning flights to Houston

Stack: [root, canceled, flights] Buffer: [to, Houston]
R: [canceled → United, flights → morning, flights → the]

Partial structure so far:

United canceled the morning flights to Houston

What is the next action?
How can we represent this parser state/configuration as features?

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 71 / 77

Features - Example configuration:

United canceled the morning flights to Houston

Stack: [root, canceled, flights] Buffer: [to, Houston]
R: [canceled → United, flights → morning, flights → the]

Partial structure so far:

United canceled the morning flights to Houston

What is the next action?
How can we represent this parser state/configuration as features?

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 71 / 77

Features - Example configuration:

United canceled the morning flights to Houston

Stack: [root, canceled, flights] Buffer: [to, Houston]
R: [canceled → United, flights → morning, flights → the]

Partial structure so far:

United canceled the morning flights to Houston

What is the next action?
How can we represent this parser state/configuration as features?

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 71 / 77

Features - Get the basic elements:

(information from stack, buffer or R)
Stack: [root, canceled, flights] Buffer: [to, Houston]
R: [canceled → United, flights → morning, flights → the]

s_w0: flights

s_p0: NOUN

s_w1: canceled

s_p1: VERB

b_w0: to #buffer

context of top on stack: child1: the, child2: morning

valence of top of stack: 2

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 72 / 77

Features - add features:

Stack: [root, canceled, flights] Buffer: [to, Houston]
R: [canceled → United, flights → morning, flights → the]

Add features (a unique string = unique feature):

unigram

features.append((’s_w0=flights’,1))

features.append((’s_w1=canceled’,1))

feature combinations

features.append((’s_w0=flights,s_p0=NOUN’, 1))

features.append((’s_w1=canceled,s_p1=VERB’, 1))

add more!

Note1: always add features with value 1!
Note2: in the code you will do this with a format statement,
because the feature depends on the current configuration

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 73 / 77

Outline

1 Introduction

2 Transition-based parsing

3 Evaluation

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 74 / 77

Evaluation

Which proportion of edges is predicted correctly?

Label accuracy (LA): nodes with correct incoming edge/total
number of nodes

Unlabeled attachment score (UAS): nodes with correct
parent/total nodes

Labeled attachment score (LAS): nodes with correct parent
and edge label / total nodes

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 75 / 77

Evaluation

gold:
Book me the flight to Houston

root

obj det

iobj

nmod

case

system:
Book me the flight to Houston

root

det

nmod

nsubj nmod

case

LAS (labeled): 4/6
UAS (unlabeled): 5/6

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 76 / 77

Evaluation

gold:
Book me the flight to Houston

root

obj det

iobj

nmod

case

system:
Book me the flight to Houston

root

det

nmod

nsubj nmod

case

LAS (labeled): 4/6
UAS (unlabeled): 5/6

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 76 / 77

Reference

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Barbara Plank bplank.github.io Dependency Parsing 11-10-2018 77 / 77

https://web.stanford.edu/~jurafsky/slp3/13.pdf

	Today
	Introduction
	Introduction to UD

	Transition-based parsing
	Choosing the Right Actions
	Representing configurations using feature templates

	Evaluation

