
Computational Linguistics: Parsing

Raffaella Bernardi
CIMeC, University of Trento

e-mail: bernardi@disi.unitn.it

Contents First Last Prev Next J



Contents

1 Done and to be done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Shallow Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Kinds of Ambiguities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Structural Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.1 Global Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Local Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 A good Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Terminating vs. Complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7 Parse Trees: Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8 Bottom up Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8.1 A bit more concretely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Contents First Last Prev Next J



8.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.4 Remarks on Bottom-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9 Top down Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.1 A bit more concretely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.3 Further choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.4 Depth first search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.5 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.6 Breadth first search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.6.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.7 Comparing Depth first and Breadth first searches . . . . . . . 33
9.8 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

10 Bottom-up vs. Top-down Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.1 Going wrong with bottom-up . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.2 Solution: Bottom up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.3 Going wrong with top-down . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10.3.1 Solution: Top-Down . . . . . . . . . . . . . . . . . . . . . . . . . 39

Contents First Last Prev Next J



1. Done and to be done

In the first lecture, we have said that to examine how the syntax of a sentence can
be computed, we must consider two things:

1. The grammar: A formal specification of the structures allowable in the lan-
guage. [Data structures]

2. The parsing technique: The method of analyzing a sentence to determine
its structure according to the grammar. [Algorithm]

So far we have looked at the “grammar”, today we will look at “parsing”.

Contents First Last Prev Next J



1.1. Parsing

Parsing is the process of recognizing an input string and assigning a structure to it.
Today we will look at

I syntactic parsing, i.e. the task of recognizing a sentence (or a constituent)
and assigning a syntactic structure to it.

I algorithms (parsers) able to assign context free parse tree to a given input.
Better, we shall consider algorithms which operate on a sequence of words (a
potential sentence) and a context-free grammar (CFG), to build one or more
trees.

I syntactic parsers vs. statistical parsers.

Contents First Last Prev Next J



2. Shallow Parsing

Many language processing tasks (e.g. information extraction, question answering
etc.) don’t require a complete parse tree. Knowing the PoS of just chunks of the
sentence is enough. For instance,

[The morning flight]NP [from]PP [Denver]NP [has arrived]V P .

[The morning flight]NP from [Denver]NP has arrived.

Chunking: finding the non-overlapping extents of the chunks and assign the correct
label to the them.

Cascade of finite state transducers have been used.

Contents First Last Prev Next J



3. Ambiguity

Why a parsing algorithm may create more than one tree?

Because natural languages are often ambiguous.

We have seen that in non-technical terms, “ambiguous” means “having more than
one meaning”, but here we focus on structural ambiguity: a sentence (or part of a
sentence) can be structured in different ways.

Contents First Last Prev Next J



4. Kinds of Ambiguities

More particularly, in our discussion of parsing we shall be concerned only with two
types of ambiguity.

I Lexical Ambiguity: a single word can have more than one syntactic category;
for example, “smoke” can be a noun or a verb, “her” can be a pronoun or a
possessive determiner.

I Structural Ambiguity: there are a few valid tree forms for a single sequence
of words; for example, which are the possible structures for

“old men and women”?

It can be grouped either as

[[old men] and women] or [old [men and women]].

Contents First Last Prev Next J



4.1. Structural Ambiguity

An important distinction must also be made between

I Global (or total) Ambiguity: in which an entire sentence has several gram-
matically allowable analyses.

I Local (or partial) Ambiguity: in which portions of a sentence, viewed in
isolation, may present several possible options, even though the sentence taken
as a whole has only one analysis that fits all its parts.

Contents First Last Prev Next J



4.1.1. Global Ambiguity Global ambiguity can be resolved only by resorting
to information outside the sentence (the context, etc.) and so cannot be solved by
a purely syntactic parser.

A good parser should, however, ensure that all possible readings can be found, so
that some further disambiguating process could make use of them.

For instance,

John saw the woman in the park with the telescope

He was at home.

Contents First Last Prev Next J



4.1.2. Local Ambiguity Local ambiguity is essentially what makes the orga-
nization of a parser non-trivial – the parser may find, in some situations, that the
input so far could match more than one of the options that it has (grammatical
rules, lexical items, etc). Even if the sentence is not ambiguous as a whole, it may
not be possible for the parser to resolve (locally and immediately) which of the
possible choices will eventually be correct.

“When Fred eats food gets thrown”

I [When Fred eats food] gets thrown??

I [When Fred eats] [food gets thrown]

Contents First Last Prev Next J



4.2. Search

Parsing is essentially a search problem (of the kind typically examined in artificial
intelligence):

I the initial state is the input sequence of words

I the desired final state is a complete tree spanning the whole sentence

I the operators available are the grammar rules and

I the choices in the search space consist of selecting which rule to apply to which
constituents.

Contents First Last Prev Next J



5. A good Parser

A parsing algorithm is provided with a grammar and a string, and it returns possible
analyses of that string. Here are the main criteria for evaluating parsing algorithms:

I Correctness: A parser is correct if all the analyses it returns are indeed valid
analyses for the string, given the grammar provided.

I Completeness: A parsing algorithm is complete if it returns every possible
analysis of every string, given the grammar provided.

I Efficiency: A parsing algorithm should not be unnecessarily complex. For
instance, it should not repeat work that only needs to be done once.

Contents First Last Prev Next J



5.1. Correctness

A parser is correct if all the analyses it returns are indeed valid analyses for
the string, given the grammar provided.

I In practice, we almost always require correctness.

I In some cases, however, we might allow the parsing algorithm to produce some
analyses that are incorrect, and we would then filter out the bad analyses
subsequently. This might be useful if some of the constraints imposed by the
grammar were very expensive to test while parsing was in progress but very
few possible analyses would actually be rejected by them.

Contents First Last Prev Next J



5.2. Completeness

A parsing algorithm is complete if it returns every possible analysis of every
string, given the grammar provided.

In some circumstances, completeness may not be desirable. For instance, in some
applications there may not be time to enumerate all analyses and there may be
good heuristics to determine what the “best” analysis is without considering all
possibilities. Nevertheless, we will generally assume that the parsing problem entails
returning all valid analyses.

Contents First Last Prev Next J



6. Terminating vs. Complete

It is important to realize that there is a distinction between “complete” (i.e. in
principle produces all analyses) and “terminating” (i.e. will stop processing in a
finite amount of time).

A parsing mechanism could be devised which systematically computes every analysis
(i.e. is complete) but if it is given a grammar for which there are an infinite number
of analyses, it will not terminate.

np ---> pn

pn ---> np

Contents First Last Prev Next J



7. Parse Trees: Example

Given the grammar:

s ---> np vp tv ---> shot

np ---> pn pn ---> vincent

vp ---> tv np pn ---> marcellus

we want to build the parse tree for the sentence “vincent shot marcellus”.

We know that

1. there must be three leaves and they must be the words “vincent”, “marcellus”,
“shot”.

2. the parse tree must have one root, which must be the start symbol s.

We can now use either the input words or the rules of the grammar to drive the
process. Accordingly to the choice we make, we obtain a “bottom up” and “top-
down” parsing, respectively.

Contents First Last Prev Next J



8. Bottom up Parsing

The basic idea of bottom up parsing and recognition is:

I to begin with the concrete data provided by the input string — that is, the
words we have to parse/recognize — and try to build bigger and bigger pieces
of structure using this information.

I Eventually we hope to put all these pieces of structure together in a way that
shows that we have found a sentence.

Putting it another way, bottom up parsing is about moving from concrete low-level
information to more abstract high-level information.

This is reflected in a very obvious point about any bottom up algorithm: in bottom
up parsing, we use our CFG rules right to left.

Contents First Last Prev Next J



8.1. A bit more concretely

Consider the CFG rule C → P1, P2, P3.

Working bottom up means that we will try to find a P1, a P2, and a P3 in the input
that are right next to each other. If we find them, we will use this information to
conclude that we have found a C.

That is, in bottom up parsing, the flow of information is from the right hand side
(P1, P2, P3) of the rules to the left hand side of the rules (C).

Let’s look at an example of bottom up parsing/recognition start from a linguistics
input.

Contents First Last Prev Next J



8.2. An Example

“Vincent shot Marcellus”. Working bottom up, we might do the following.

1. First we go through the string, systematically looking for strings of length 1 that
we can rewrite by using our CFG rules in a right to left direction.

2. Now, we have the rule pn → vincent, so using this in a right to left direction gives
us: pn shot marcellus.

3. But wait: we also have the rule np → pn, so using this right to left we build: np shot
marcellus.

4. We’re still looking for strings of length 1 that we can rewrite using our CFG rules
right to left — but we can’t do anything with np.

5. But we can do something with the second symbol, “shot”. We have the rule tv →
shot, and using this right to left yields: np tv marcellus.

Contents First Last Prev Next J



6. Can we rewrite tv using a CFG rule right to left?

No — so it’s time to move on and see what we can do with the last symbol, “mar-
cellus”.

We have the rule pn → marcellus, and this lets us build: np tv pn

7. We also have the rule np → pn so using this right to left we build: np tv np

8. Are there any more strings of length 1 we can rewrite using our context free rules
right to left?

No — we’ve done them all.

9. So now we start again at the beginning looking for strings of length 2 that we
can rewrite using our CFG rules right to left. And there is one: we have the rule
vp → tv np, and this lets us build: np vp

10. Are there any other strings of length 2 we can rewrite using our CFG rules right to
left? Yes — we can now use: s → np vp, we have built: s

11. And this means we are finished.

Working bottom up we have succeeded in rewriting our original string of symbols into the
symbol s — so we have successfully recognized “Vincent shot Marcellus” as a sentence.

Contents First Last Prev Next J



8.3. Example

Sara wears the new dress pn → sara
pn wears the new dress np → pn
np wears the new dress tv → wears
np tv the new dress det → the
np tv det new dress adj → new
np tv det adj dress n → dress
np tv det adj n n → adj n
np tv det n np → det n
np tv np vp → tv np
np vp s → np vp
s

Contents First Last Prev Next J



8.4. Remarks on Bottom-up

A couple of points are worth emphasizing. This is just one of many possible ways
of performing a bottom up analysis. All bottom up algorithms use CFG rules right
to left — but there are many different ways this can be done.

To give a rather pointless example: we could have designed our algorithm so that
it started reading the input in the middle of the string, and then zig-zagged its way
to the front and back. And there are many much more serious variations — such
as the choice between depth first and breadth first search that we will look at later
today.

In fact, the algorithm that we used above is crude and inefficient. But it does have
one advantage — it is easy to understand.

Contents First Last Prev Next J



9. Top down Parsing

As we have seen, in bottom-up parsing/recognition we start at the most concrete
level (the level of words) and try to show that the input string has the abstract
structure we are interested in (this usually means showing that it is a sentence). So
we use our CFG rules right-to-left.

In top-down parsing/recognition we do the reverse.

I We start at the most abstract level (the level of sentences) and work down
to the most concrete level (the level of words).

I So, given an input string, we start out by assuming that it is a sentence, and
then try to prove that it really is one by using the rules left-to-right.

Contents First Last Prev Next J



9.1. A bit more concretely

That works as follows:

1. If we want to prove that the input is of category s and we have the rule s →
np vp, then we will try next to prove that the input string consists of a noun
phrase followed by a verb phrase.

2. If we furthermore have the rule np → det n, we try to prove that the input
string consists of a determiner followed by a noun and a verb phrase.

That is, we use the rules in a left-to-right fashion to expand the categories that
we want to recognize until we have reached categories that match the preterminal
symbols corresponding to the words of the input sentence.

Contents First Last Prev Next J



9.2. An example

The left column represents the sequence of categories and words that is arrived at
by replacing one of the categories (identical to the left-hand side of the rule in the
second column) on the line above by the right-hand side of the rule or by a word
that is assigned that category by the lexicon.

s s → np vp
np vp vp → v np
np v np np → det n
np v det n n → adj n
np v det adj n np → Sara
Sara v det adj n v → wears
Sara wears det adj n det → the
Sara wears the adj n adj → new
Sara wears the new n n → dress
Sara wears the new dress

Contents First Last Prev Next J



9.3. Further choices

Of course there are lots of choices still to be made.

I Do we scan the input string from right-to-left, from left-to-right, or zig-zagging
out from the middle?

I In what order should we scan the rules? More interestingly, do we use depth-
first or breadth-first search?

Contents First Last Prev Next J



9.4. Depth first search

Depth first search means that whenever there is more than one rule that could be applied
at one point, we explore one possibility and only look at the others when this
one fails. Let’s look at an example.

s ---> np, vp.

np ---> pn.

vp ---> iv.

vp ---> tv, np.

lex(vincent,pn). %alternative notation for pn ---> vincent

lex(mia,pn).

lex(died,iv).

lex(loved,tv).

lex(shot,tv).

The sentence “Mia loved Vincent” is admitted by this grammar. Let’s see how a top-down
parser using depth first search would go about showing this.

Contents First Last Prev Next J



9.4.1. Example

Contents First Last Prev Next J



9.5. Reflections

It should be clear why this approach is called top-down: we clearly work from the
abstract to the concrete, and we make use of the CFG rules left-to-right.

Furthermore, it is an example of depth first search because when we were faced with
a choice, we selected one alternative, and worked out its consequences. If the choice
turned out to be wrong, we backtracked.

For example, above we were faced with a choice of which way to try and build a vp
— using an intransitive verb or a transitive verb.

We first tried to do so using an intransitive verb (at state 4) but this didn’t work out
(state 5) so we backtracked and tried a transitive analysis (state 4’). This eventually
worked out.

Contents First Last Prev Next J



9.6. Breadth first search

The big difference between breadth-first and depth-first search is that in breadth-
first search we carry out all possible choices at once, instead of just picking
one.

It is useful to imagine that we are working with a big bag containing all the
possibilities we should look at — so in what follows I have used set-theoretic
braces to indicate this bag. When we start parsing, the bag contains just one item.

Contents First Last Prev Next J



9.6.1. An example

The crucial difference occurs at state 4. There we try both ways of building vp at once.

At the next step, the intransitive analysis is discarded, but the transitive analysis remains

in the bag, and eventually succeeds.

Contents First Last Prev Next J



9.7. Comparing Depth first and Breadth first searches

I The advantage of breadth-first search is that it prevents us from zeroing in
on one choice that may turn out to be completely wrong; this often happens
with depth-first search, which causes a lot of backtracking.

I Its disadvantage is that we need to keep track of all the choices — and if the
bag gets big (and it may get very big) we pay a computational price.

So which is better?

There is no general answer. With some grammars breadth-first search, with others
depth-first.

Contents First Last Prev Next J



9.8. Exercise

Try the two top-down approaches to parse “La vecchia porta sbatte” given the
grammar below.

det ---> la s --> np vp

adj ---> vecchia vp --> iv

n ---> vecchia vp --> tv np

n ---> porta np --> det n

tv ---> porta n --> adj n

iv ---> sbatte

Contents First Last Prev Next J



10. Bottom-up vs. Top-down Parsing

Each of these two strategies has its own advantages and disadvantages:

1. Trees (not) leading to an s

I The top-down parsing: It never wastes time exploring tree that cannot
result in an s.

I The bottom-up parsing: trees that have no hope of leading to an s are
generated.

2. Trees (not) consistent with the input:

I The top-down parsing: It can waste time generating trees which are not
consistent with the input.

I The bottom-up parsing: It never generates tree which are not locally
grounded in the actual input.

Used parsers usually combine the best features of the two approaches.

Contents First Last Prev Next J



10.1. Going wrong with bottom-up

Say, we have the following grammar fragment:

s ---> np vp

np ---> det n

vp ---> iv

vp ---> tv np

tv ---> plant

iv ---> died

det ---> the

n ---> plant

Try to parse “the plant died” using a bottom-up parser.

Contents First Last Prev Next J



10.2. Solution: Bottom up

Note, how “plant” is ambiguous in this grammar: it can be used as a common noun
or as a transitive verb.

1. If we now try to bottom-up recognize “the plant died”, we would first find that
“the” is a determiner, so that we could rewrite our string to “det plant died”.

2. Then we would find that “plant” can be a transitive verb giving us “det tv
died”.

3. “det” and “tv” cannot be combined by any rule.

4. So, “died” would be rewritten next, yielding “det tv iv” and then “det tv vp”.

5. Here, it would finally become clear that we took a wrong decision somewhere:
nothing can be done anymore and we have to backtrack.

6. Doing so, we would find that “plant” can also be a noun, so that “det plant
died” could also be rewritten as “det n died”, which will eventually lead us to
success.

Contents First Last Prev Next J



10.3. Going wrong with top-down

Assume we have the following grammar

s ---> np vp

np ---> det n

np ---> pn

vp ---> iv

det ---> the

n ---> robber

pn ---> Vincent

iv ---> died

try to use it to top-down recognize the string “vincent died”.

Contents First Last Prev Next J



10.3.1. Solution: Top-Down

1. Proceeding in a top-down manner, we would first expand s to np vp.

2. Next we would check what we can do with the np and find the rule np → det n.

3. We would therefore expand np to det n.

4. Then we either have to find a lexical rule to relate “vincent” to the category
det, or we have to find a phrase structure rule to expand det.

5. Neither is possible, so we would backtrack checking whether there are any
alternative decisions somewhere.

Contents First Last Prev Next J


	Done and to be done
	Parsing

	Shallow Parsing
	Ambiguity
	Kinds of Ambiguities
	Structural Ambiguity
	Global Ambiguity
	Local Ambiguity

	Search

	A good Parser
	Correctness
	Completeness

	Terminating vs. Complete
	Parse Trees: Example
	Bottom up Parsing
	A bit more concretely
	An Example
	Example
	Remarks on Bottom-up

	Top down Parsing
	A bit more concretely
	An example
	Further choices
	Depth first search
	Example

	Reflections
	Breadth first search
	An example

	Comparing Depth first and Breadth first searches
	Exercise

	Bottom-up vs. Top-down Parsing
	Going wrong with bottom-up
	Solution: Bottom up 
	Going wrong with top-down
	Solution: Top-Down



