
Computational Linguistics:
TAG, CG and DG

Raffaella Bernardi

University of Trento

Contents First Last Prev Next J

1. Last time and today

I We have seen that Formal Grammars have played a crucial role in the research
on Computational Linguistics.

I We have looked at Context Free Grammars/Phrase Structure Grammars.

Through the years, computational linguists have developed other formal grammars
too.

Today, we will look at TAG, CG and DG..

Contents First Last Prev Next J

2. Tree Adjoining Grammar (TAG)

I Who: Aravind Joshi (1969).

I Aim: To build a language recognition device.

I How: Linguistic strings are seen as the result of concatenation obtained by
means of syntactic rules starting from the trees assigned to lexical items. The
grammar is known as Tree Adjoining Grammar (TAG).

I http://www.cis.upenn.edu/~xtag/

Contents First Last Prev Next J

http://www.cis.upenn.edu/~xtag/

2.1. TAG & CFG

CFG:

S --> NP VP NP --> Harry ADV --> passionately

VP --> V NP NP --> Ginny

VP --> VP ADV V --> likes

TAG: set of lexically anchored elementary trees. The intial trees are:

a1 S a2 NP a3 NP

/ \ | |

NP| VP Ginny Harry

/ \

V NP |

|

likes

Note: NP | stands for NP ↓

Contents First Last Prev Next J

2.2. TAG rules

Contents First Last Prev Next J

2.3. Example

Let’s apply the substitution rules to the entries given above:

a1 S a2 NP a3 NP

/ \ | |

NP| VP Ginny Harry

/ \

V NP |

|

likes

Contents First Last Prev Next J

2.4. Example

“Harry thinks Ron likes Hermione”

We need to add the entry for “thinks”:

To account for gaps, “Who does Harry think Ron linkes?”, new elementary trees
are assigned.

Contents First Last Prev Next J

2.5. Auxiliary trees

Elementary trees can also be auxiliary trees, e.g.:

I one of its frontier nodes must be marked as foot node (*)

I the foot node must be labeled with a non-terminal symbol which is identical
to the label of the root node.

Contents First Last Prev Next J

2.6. Adjunction

Contents First Last Prev Next J

Contents First Last Prev Next J

3. Categorial Grammar

I Who: Lesniewski (1929), Ajdukiewicz (1935), Bar-Hillel (1953).

I Aim: To build a language recognition device.

I How: Linguistic strings are seen as the result of concatenation obtained by
means of syntactic rules starting from the categories assigned to lexical items.
The grammar is known as Classical Categorial Grammar (CG).

Categories: Given a set of basic categories ATOM, the set of categories CAT is the
smallest set such that:

CAT := ATOM | CAT\CAT | CAT/CAT

Contents First Last Prev Next J

4. CG: Syntactic Rules

Categories can be composed by means of the syntactic rules below

[BA] If α is an expression of category A, and β is an expression of category A\B,
then αβ is an expression of category B.

[FA] If α is an expression of category A, and β is an expression of category B/A,
then βα is an expression of category B.

where [FA] and [BA] stand for Forward and Backward Application, respectively.

[BA] B

A

α

A\B

β

[FA] B

B/A

β

A

α

Contents First Last Prev Next J

5. CG Lexicon: Toy Fragment

Let ATOM be {n, s, np} (for nouns, sentences and noun phrases, respectively) and LEX as
given below. Recall CFG rules: np → det n, s → np vp, vp → v np . . .

Lexicon

Sara np the np/n
student n walks np\s
wrote (np\s)/np

Sara walks ∈ s? ; np︸︷︷︸
Sara

, np\s︸ ︷︷ ︸
walks

∈ s? Yes

simply [BA]

s

np

Sara

np\s

walks

Contents First Last Prev Next J

6. Classical Categorial Grammar

Alternatively the rules can be thought of as Modus Ponens rules and can be written
as below.

B/A,A⇒ B MPr

A,A\B ⇒ B MPl

B/A A

B
(MPr)

A A\B
B

(MPl)

Contents First Last Prev Next J

7. Classical Categorial Grammar. Examples

Given ATOM = {np, s, n}, we can build the following lexicon:

Lexicon

John, Mary ∈ np the ∈ np/n
student ∈ n
walks ∈ np\s
sees ∈ (np\s)/np

Analysis

John walks ∈ s? ; np, np\s⇒ s? Yes

np np\s
s (MPl)

John sees Mary ∈ s? ; np, (np\s)/np, np⇒ s? Yes

np

(np\s)/np np

np\s (MPr)

s (MPl)

Contents First Last Prev Next J

7.1. CFG and CG

Below is an example of a simple CFG and an equivalent CG:

CFG

S --> NP VP

VP --> TV NP

N --> Adj N

Lexicon:

Adj --> poor

NP --> john

TV --> kisses

CG Lexicon:

John: np
kisses: (np\s)/np
poor: n/n

Contents First Last Prev Next J

7.2. Relative Pronoun

Let’s see the syntactic category of a relative pronoun in subject position E.g. “the
student who knows Lori”
the [[student]n [who [knows Lori](np\s)]?]n
who knows Lori ∈ n\n? ;

(n\n)/(np\s), (np\s)/np, np⇒ n\n?

who
(n\n)/(np\s)

knows
(np\s)/np

Lori
np

np\s (MPr)

n\n (MPr)

n\n

(n\n)/(np\s)

who

(np\s)

(np\s)/np

knows

np

Lori

Contents First Last Prev Next J

8. Logic Grammar

I Aim: To define the logic behind CG.

I How: Considering categories as formulae; \, / as logic connectives.

I Who: Jim Lambek [1958]

Contents First Last Prev Next J

8.1. Lambek Calculi

In the Lambek Calculus besides the elimination rules of \, / (that we saw in CG)
we have their introduction rules.

B/A A

B
/E

A A\B
B

\E

[A]i
....
B
B/A

/Ii

[A]i
....
B
A\B \Ii

Contents First Last Prev Next J

9. Extraction: Right-branch (tree)

A book which [Sara wrote [. . .]]s︸ ︷︷ ︸
np

is interesting︸ ︷︷ ︸
np\s

.

s

np

Sara

np\s

(np\s)/np

wrote

np

hyp

s

np\s

np

Sara

(np\s)/np

wrote

np

hyp

s/np

s

np\s

np

Sara

(np\s)/np

wrote

np

hyp

[. . .]

Contents First Last Prev Next J

10. CCG and TLG

A well known version of CG is CCG (Combinatory Categorial Grammar) developed
by Mark Steedman (Edinburgh University).

I CCG Bank

I C&C parser

I C&C parser together with Boxer (MR builder).

Link to some softwares: http://groups.inf.ed.ac.uk/ccg/software.html

Another mathematically elegant version is Type Logical Grammar (TLG) developed
by Michael Moortgat (Utrecht University)

I Grail parser: http://www.labri.fr/perso/moot/grail3.html (Richard Moot)

See ESSLLI for various courses on these grammars.

Contents First Last Prev Next J

http://groups.inf.ed.ac.uk/ccg/software.html
http://www.labri.fr/perso/moot/grail3.html

11. History of Formal Grammars

Important steps in the historical developments of Formal grammar started in the
1950’s and can be divided into five phases:

1. Formalization: Away from descriptive linguistics and behavioralism (perfor-
mance vs. competence) [1950’s 1960’s]

2. Inclusion of meaning: Compositionality [1970’s]

3. Problems with word order: Need of stronger formalisms [1970’s 1980’s]

4. Grammar meets logic & computation [1990’s]

5. Grammar meets statistic [1990’s 2000’s]

6. We live in the Neural Network era: applications also to parsing.

Two main perspectives: constituency-based or dependency-based.

Contents First Last Prev Next J

11.1. Dependency Grammars (example)

The labeled arcs go from heads to dependents. The root is the head of the sentence.

Note, the arguments to the verb “prefer” are directly linked to it vs. in a phrase-
structure tree they would be far from each other.

Contents First Last Prev Next J

11.2. DG: dependency tree

The dependency tree is a directed graph that satisfies the following constraints:

1. There is a single designated root node that has not incoming arcs.

2. With the exception of the root note, each vertex has exactly one incoming arc.

3. There ia a unique path from the root node to each vertex in V .

Contents First Last Prev Next J

11.3. DG: advantages

There are many version of DGs, in general in DG there are no non-terminal or
phrasal nodes: each link holds between two lexical nodes. Links can be labelled by
the grammatical relation.

(Claimed) Advantages:

I Parsing: less choices about dependency links, hence more precise parsers.

I Better for relatively free word order languages. (eg. Czech)

Contents First Last Prev Next J

11.4. Constituency vs. Dependencies

Dependency and constituency describe different dimensions.

1. A phrase-structure tree is closely related to a derivation, whereas a dependency
tree rather describes the product of a process of derivation.

2. Usually, given a phrase-structrue tree, we can get very close to a dependency
tree by constructing the transitive collapse of headed structures over nonter-
minals.

Constituency and dependency are not adversaries, they are complementary notions.

Using them together we can overcome the problems that each notion has individu-
ally.

Contents First Last Prev Next J

12. Recall: Generative Power/Complexity of FGs

Every (formal) grammar generates a unique language. However, one language can
be generated by several different (formal) grammars.

Formal grammars differ with respect to their generative power:

One grammar is of a greater generative power than another if it can recognize a
language that the other cannot recognize.

Two grammars are said to be

I weakly equivalent if they generate the same string language.

I strongly equivalent if they generate both the same string language and the
same tree language.

Contents First Last Prev Next J

12.1. DG, CG, TLG, CCG, and TAG

I DG: Gross (1964)(p.49) claimed that the dependency languages are exactly
the context-free languages. This claim turned out to be a mistake, and hence
there has been new interest in DG. (Used in various NLP application, eg. QA)

I CG: Chomsky (1963) conjectured that Lambek calculi were also context-
free. This conjecture was proved by Pentus and Buszkowski in 1997.

I TAG and CCG: have been proved to be Mildly Context Free.

I TLG (A version of Lambek calculi) has been proved to be Mildly Sensitive
(Moot), or Context Sensitive (Moot) or Turing Complete (Carpenter), accord-
ingly to the structural rules allowed.

Contents First Last Prev Next J

12.2. Most re-known treebanks

I CFG based: Penn Treebank: By Marcus et ali. first edition 1993. Released
via the Linguistic Data Consortium. 1M words 1987-1989 Wall Street Journal
(WSJ)

I DG: http://ufal.mff.cuni.cz/prague-english-dependency-treebank.

I DG: (Multilingual) http://universaldependencies.org/

I CCG: http://groups.inf.ed.ac.uk/ccg/ccgbank.html. CCGbank is a trans-
lation of the Penn Treebank into a corpus of Combinatory Categorial Grammar
derivations.

Contents First Last Prev Next J

http://ufal.mff.cuni.cz/prague-english-dependency-treebank
http://universaldependencies.org/
http://groups.inf.ed.ac.uk/ccg/ccgbank.html

	Last time and today
	Tree Adjoining Grammar (TAG)
	TAG & CFG
	TAG rules
	Example
	Example
	Auxiliary trees
	Adjunction

	Categorial Grammar
	CG: Syntactic Rules
	CG Lexicon: Toy Fragment
	Classical Categorial Grammar
	Classical Categorial Grammar. Examples
	CFG and CG
	Relative Pronoun

	Logic Grammar
	Lambek Calculi

	Extraction: Right-branch (tree)
	CCG and TLG
	History of Formal Grammars
	Dependency Grammars (example)
	DG: dependency tree
	DG: advantages
	Constituency vs. Dependencies

	Recall: Generative Power/Complexity of FGs
	DG, CG, TLG, CCG, and TAG
	Most re-known treebanks

