
Computational Linguistics:
Context Free Grammars

Raffaella Bernardi

e-mail: raffaella.bernardi@unitn.it

Contents First Last Prev Next J



1. Syntax

I Syntax: “setting out things together”, in our case things are words. The
main question addressed here is “How do words compose together to form a
grammatical sentence (s) (or fragments of it)?”

I Constituents: Groups of categories may form a single unit or phrase called
constituent. The main phrases are noun phrases (np), verb phrases (vp), prepo-
sitional phrases (pp). Noun phrases for instance are: “she”; “Michael”; “Rajeev
Goré”; “the house”; “a young two-year child”.

Tests like substitution help decide whether words form constituents.

Another possible test is coordination.

Contents First Last Prev Next J



2. Dependency

Dependency: Categories are interdependent, for example

Ryanair services [Pescara]np Ryanair flies [to Pescara]pp
*Ryanair services [to Pescara]pp *Ryanair flies [Pescara]np

the verbs services and flies determine which category can/must be juxtaposed. If
their constraints are not satisfied the structure is ungrammatical.

Contents First Last Prev Next J



3. Long-distance Dependencies

Interdependent constituents need not be juxtaposed, but may form long-distance
dependencies, manifested by gaps

I What cities does Ryanair service [. . .]?

The constituent what cities depends on the verb service, but it is at the front of the
sentence rather than at the object position.

Such distance can be large,

I Which flight do you want me to book [. . .]?

I Which flight do you want me to have the travel agent book [. . .]?

I Which flight do you want me to have the travel agent nearby my office book
[. . .]?

Contents First Last Prev Next J



3.1. Relative Pronouns

Relative Pronoun (eg. who, which): they function as e.g. the subject or object of
the verb embedded in the relative clause (rc),

I [[the [student [who [. . .] knows Sara]rc]n]np [left]v]s.

I [[the [book [which Sara wrote [. . .]]rc]n]np [is interesting]v]s.

Contents First Last Prev Next J



3.2. Coordination

Coordination: Expressions of the same syntactic category can be coordinated
via “and”, “or”, “but” to form more complex phrases of the same category. For
instance, a coordinated verb phrase can consist of two other verb phrases separated
by a conjunction:

I There are no flights [[leaving Denver]vp and [arriving in San Francisco]vp]vp

The conjuncted expressions belong to traditional constituent classes, vp. However,
we could also have

I I [[[want to try to write [. . .]] and [hope to see produced [. . .]]] [the movie]np]vp”

Again, the interdependent constituents are disconnected from each other.

Long-distance dependencies are challenging phenomena for formal approaches
to natural language analysis.

Contents First Last Prev Next J



3.3. Sentence Structures: English

The structure of a sentence can be represented in several ways, the most common
are the following notations: (i) brackets or (ii) trees. For instance, “John ate the
cat”:

[Johnnp [atev [thedet catn]np]vp]s

In words, it is a sentence (s) consisting of noun phrase (np) and a verb phrase (vp).
The noun phrase is composed of a verb (v) “ate” and an np, which consists of a
determiner (det) “the” and a common noun (n) “cat”.

s

np

John

vp

v

ate

np

det

the

n

cat

Contents First Last Prev Next J



4. Formal Approaches

To examine how a string can be computed, two things must be considered:

1. The grammar: A formal specification of the structures allowable in the lan-
guage. [Data structures]

2. The parsing technique: The method of analyzing the string. [Algorithm]

Today we ask:

1. Which Grammar do we need to analyse NLs syntax?

2. Which Formal Language can represent NL?

Contents First Last Prev Next J



5. Formal Grammar: Terminology

Formal Grammars are string re-write systems. The re-write rules say that a
certain sequence of symbols may be substituted by another sequence of symbols.
These symbols are divided into two classes:

I terminal: symbols that will appear in the string of the language generated by
the grammar.

I non-terminal: symbols that will be used only in the re-write process.

Given a string, we want to know whether it belongs to the (Natural) Language.

Contents First Last Prev Next J



6. Formal Grammars: Definition

A Grammar, G, is a tuple: G = (VT , VN , S, P ), such that:

I VT is the finite set of Terminal Symbols.

I VN is the finite set of Non-Terminal Symbols.

I Terminal and Non-Terminal symbols give rise to the alphabet: V = VT ∪ VN .

I Terminal and Non-Terminal symbols are disjoint sets: VT ∩ VN = {}.

I S is the start symbol of the Language, and S ∈ VN .

I P is the finite set of Productions, P = {α→ β | α ∈ ∧β ∈ V ∗}.

Contents First Last Prev Next J



6.1. Derivations

To characterize a Language starting from a Grammar we need to introduce the
notion of Derivation.

I The notion of Derivation uses Productions to generate a string starting from
the Start symbol S.

I Direct Derivation (in symbols ⇒)). If α → β ∈ P and γ, δ ∈ V ∗, then γαδ ⇒
γβδ).

I Derivation (in symbols ⇒∗)). If α1 ⇒ α2, α2 ⇒ α3, . . . , αn−1 ⇒ αn, then
α1 ⇒∗ αn.

Contents First Last Prev Next J



6.2. Formal Languages and FG

A string belongs to a Language if and only if:

1. The string is made only of Terminal Symbols;

2. The string can be Derived from the Start Symbol, S, of the Language.

Generative Definition of a Language We say that a Language L is generated by the
Grammar G, in symbols L(G), if:

L(G) = {w ∈ V ∗
T | S ⇒∗ w}.

Contents First Last Prev Next J



6.3. FG and Regular Languages

We have said that the languages generated/recognized by a FSA are called “Regular
Languages”.

The formal grammars that generate/recognize these languages are known as “Reg-
ular Grammar” (RG) or Right Linear Grammars. (or Left Linear Grammar).

Regular Grammars have rules of the form:

I A→ xB

I A→ x

where A and B are non-terminal symbols and x is any string of terminals (possibly
empty).

Moreover, a rule of the form: S → ε is allowed if S does not appear on the right
side of any rule.

Contents First Last Prev Next J



6.4. FSA and RG

The association between FSA and RG is straight:

RG FSA
A→ xB from state A to state B reading x
A→ x from state A reading x to a designed final state.
start symbol initial state.

As in FSA, the string already generated/recognized by the grammar has no influence
on the strings to be read in the future (no memory!).

Contents First Last Prev Next J



7. Syntax Recognizer/Generator

In lecture 1, we have used FSA to recognize/generate natural language morphology.
We have said that FSA recognize/generate “Regular Languages”.

Can FSA or their corresponding grammar (RG) be used to recognize/generate NL
syntax?

Pumping Lemma Recall: For instance, a non-regular language is, e.g., L = {anbn | n >
0}. More generally, FSA cannot generate/recognize balanced open and closed paren-
theses. The Pumping Lemma proves that L is not a regular language

Roughly note that with FSA you cannot record (no memory) any arbitrary number
of a’s you have read, hence you cannot control that the number of a’s and b’s has
to be the same. In other words, you cannot account for the fact that there exists a
relation of dependency between an and bn.

It has been shown that at the syntactic level NLs are not regular.

Contents First Last Prev Next J



8. NLs are not RL: Example I

1. The cat died.

2. The cat the dog chased died.

3. The cat the dog the rat bit chased died.

4. . . .

Let, determiner+noun be in the set A : { the cat, the dog, . . .}, and the transitive
verbs in B : { chased, bit, . . .}. Thus the strings illustrated above are all of the
form:

xnyn−1 died, where x ∈ A and y ∈ B, which can be proved to be not a RL.

Contents First Last Prev Next J



8.1. NLs are not RL: Example II

Another evidence was provided by Chomsky in 1956. Let S1, S2, . . . Sn be declarative
sentences, the following syntactic structures are grammatical English sentences:

I If S1, then S2

I Either S3, or S4

I The man who said S5 is arriving today

In each case there is a lexical dependency between one part of each structure and
another. “If” must be followed by “then” “either” must be followed by “or”.

Contents First Last Prev Next J



Moreover, these sentences can be embedded in English one in another.

If either the man who said S5 is arriving today or the man who said S5

is arriving tomorrow, then the man who said S6 is arriving the day after.
Let

if → a
then → a
either → b
or → b
other words → ε

The sentence above would be represented as abba.

We can prove via the Pumping Lemma that this language is not in a regular lan-
guage.

Again, this is an example of open and closed balanced parentheses (or nested
dependencies) that are not in RL.

Contents First Last Prev Next J



9. Context Free Grammars

Formal Grammar more powerful than Regular Grammars are Context Free Gram-
mars (CFG).

These grammars are called context free because all rules contain only one symbol
on the left hand side — and wherever we see that symbol while doing a derivation,
we are free to replace it with the stuff on the right hand side. That is, the ‘context’
in which a symbol on the left hand side of a rule occurs is unimportant — we can
always use the rule to make the rewrite while doing a derivation.

A language is called context free if it is generated by some context free grammar.

Well known CFG are Phrase Structure Grammars (PSG) , they are based on
rewrite rules. They can be used for both understanding and generating sentences.

Contents First Last Prev Next J



10. CFG: Formal Language

Let’s start by using simple grammars that generate formal languages. E.g., take the
grammar below.

Rules
Rule 1 S → A B Rule 2 S → A S B
Rule 3 A→ a Rule 4 B → b

the above grammar let us rewrite ‘S’ to ‘aabb’.

S

ASB Rule 2

aSB Rule 3

aSb Rule 4

aABb Rule 1

aaBb Rule 3

aabb Rule 4

Such a sequence is called a derivation of the symbols in the last row, in this case, i.e. a
derivation of the string ‘aabb’ (S ⇒∗ aabb).

Contents First Last Prev Next J



10.1. CFG: More derivations

Note that there may be many derivations of the same string. For example,

S

ASB Rule 2

ASb Rule 4

aSb Rule 3

aABb Rule 1

aAbb Rule 4

aabb Rule 3

is another derivation of ‘aabb’.

Contents First Last Prev Next J



10.2. CFG: Language Generated

The above grammar generates the language anbn − ε (the language consisting of all
strings consisting of a block of a’s followed by a block of b’s of equal length, except
the empty string).

If we added the rule S → ε to this grammar we would generate the language anbn.
Therefore, these two languages are context free.

On the other hand, anbncn is not. That is, no matter how hard you try to find
CFG rules that generate this language, you won’t succeed. No CFG can do the job.
The same holds for, e.g. anbmcndm.

Again, there are formal ways to prove whether a language is or is not context free.

Contents First Last Prev Next J



11. FG and Natural Language: parse trees

CFG rules can be used to verify which trees are admissible. A tree is licensed by
the grammar when the presence of every node with daughters can be justified by
some rule.

There is a close correspondence between parse trees and derivations: every deriva-
tion corresponds to a parse tree, and every parse tree corresponds to (maybe many)
derivations.

For example, the two derivations above correspond to the same tree.

Contents First Last Prev Next J



12. FG for NL: Lexicon vs. Grammatical Rules

CFG applied to natural language: it is convenient to distinguish rules from non-
terminal to terminal symbols which define the lexical entries (or lexicon).

I Terminal: The terminal symbols are words (e.g. sara, dress . . .).

I Non-terminal: The non-terminal symbols are syntactic categories (CAT) (e.g.
np, vp, . . .).

I Start symbol: The start symbol is the s and stands for sentence.

The production rules are divided into:

I Lexicon: e.g. np→ sara.

I Grammatical Rules: They are of the type s→ np vp.

Contents First Last Prev Next J



13. PSG: English Toy Fragment

We consider a small fragment of English defined by the following grammar G =
〈LEX,Rules, V, CAT 〉.

I V = {Sara, dress,wears, the, new},

I CAT = {det, n, np, s, v, vp, adj},

I LEX = {np→ sara, det→ the, adj → new, v → wears}

I Rules = {s→ np vp, np→ det n, vp→ v np, n→ adj n}

Contents First Last Prev Next J



14. English Toy Fragment: Strings

S
np vp
Sara vp
Sara v np
Sara wears np
Sara wears det n
Sara wears the n
Sara wears the adj n
Sara wears the new n
Sara wears the new dress

Contents First Last Prev Next J



15. English Toy Fragment: Phrase Structure Trees
adj → new adj

new

n → dress n

dress

n → adj n n

adj n

n

adj

new

n

dress

s

np

Sara

vp

v

wears

np

det

the

n

adj

new

n

dress

Contents First Last Prev Next J



16. Summing up (I)

We have seen that

I There is a close correspondence between parse trees and derivations: every
derivation corresponds to a parse tree, and every parse tree corresponds to
(maybe many) derivations.

I PSG, besides deciding whether a string belongs to a given language, deals with
phrase structures represented as trees.

I An important difference between strings and phrase structures is that whereas
string concatenation is assumed to be associative, trees are bracketed struc-
tures.

I Thus trees preserve aspects of the compositional (constituent) structure or
derivation which is lost in the string representations.

Contents First Last Prev Next J



17. Summing up (II)

I The language generated by a grammar consists of all the strings that the
grammar classifies as grammatical.

I A CFG recognizer is a program that correctly tells us whether or not a string
belongs to the language generated by a CFG.

I A CFG parser is a program that correctly decides whether a string belongs to
the language generated by a CFG and also tells us what its structure is.

I A Context Free Language is a language that can be generated by a CFG.

Contents First Last Prev Next J



18. Next class

On the 5th of October, during the blended lecture (in class and zoom: 10:30-12:00):

I you will answer a quizz about the content of this video,

I we will look at the answers and discuss them together.

Contents First Last Prev Next J


	Syntax
	Dependency
	Long-distance Dependencies
	Relative Pronouns
	Coordination
	Sentence Structures: English

	Formal Approaches
	Formal Grammar: Terminology
	Formal Grammars: Definition
	Derivations
	Formal Languages and FG
	FG and Regular Languages
	FSA and RG

	Syntax Recognizer/Generator
	NLs are not RL: Example I
	NLs are not RL: Example II

	Context Free Grammars
	CFG: Formal Language
	CFG: More derivations
	CFG: Language Generated

	FG and Natural Language: parse trees
	FG for NL: Lexicon vs. Grammatical Rules
	PSG: English Toy Fragment
	English Toy Fragment: Strings
	English Toy Fragment: Phrase Structure Trees
	Summing up (I)
	Summing up (II)
	Next class

