
MalwareLab: Experimentation with Cybercrime Attack Tools

Luca Allodi
DISI - University of Trento.

Via Sommarive 5, Povo (TN), Italy

Vadim Kotov
DISI - University of Trento.

Via Sommarive 5, Povo (TN), Italy

Fabio Massacci
DISI - University of Trento.

Via Sommarive 5, Povo (TN), Italy

Abstract

Cybercrime attack tools (i.e. Exploit Kits) are reportedly
responsible for the majority of attacks affecting home
users. Exploit kits are traded in the black markets at
different prices and advertising different capabilities and
functionalities. In this paper we present our experimental
approach in testing 10 exploit kits leaked from the mar-
kets that we deployed in an isolated environment, our
MalwareLab. The purpose of this experiment is to test
these tools in terms of resiliency against changing soft-
ware configurations in time. We present our experiment
design and implementation, discuss challenges, lesson
learned and open problems, and present a preliminary
analysis of the results.

1 Introduction

In the cybercrime underground markets attack tools and
software artefacts are constantly traded [3, 10]; these are
responsible, reportedly, for about two thirds of user in-
fections worldwide [8]. A class of these tools, namely
“Exploit Kits”, seem to be particularly popular among
cyber-criminals, to the point that both industry [10] and
academia [3] got recently interested in the phenomenon.
An exploit kit is a software tool used by cyber crimi-
nals to deliver drive-by-download attacks. It is an HTTP
server-side application, that, based on request headers,
returns a page with an appropriate set of exploits to the
victim computer. Exploit kits are traded in the black mar-
kets and explicitly advertise the vulnerabilities they ex-
ploit. We performed a systematic exploration of under-
ground and public channels and gathered more than 30
exploit kits, spanning from 2007 to 2011.

In this paper we describe our experimental approach
to test exploit kits in terms of resiliency in time and
namely for how long an exploit kit would work consid-
ering the pace of software evolution. We conduct our ex-
periments in an isolated environment, the MalwareLab,

built for this purpose and maintained at the University of
Trento, Italy. We discuss our design and implementation
methodology, and present the results of our analysis. We
also discuss strengths and weaknesses of our design, and
potential flaws of our implementation.

Section 2 and 3 give a brief background on exploit
kits and discuss related work respectively. In Section
4 we report a first (failed) experiment design. The pa-
per then proceeds with describing a second experiment
design (Section 5) and implementation (Section 6). We
then discuss in Section 7 preliminary results of the exper-
iment. Section 8 presents open points and challenges we
identify in our design and implementation, and Section 9
concludes the paper.

2 Background on exploit kits

Exploit kits’ main purpose is to silently download and
execute malware on the victim machine by taking ad-
vantage of browser or plugin vulnerabilities. Errors in
applied programming interfaces or memory corruption
based vulnerabilities allow an exploit to inject a set of in-
structions (shellcode) into the target process. Shellcode
on its turn downloads an executable malware on the vic-
tim’s hard drive and executes it. The executable installed
on the target system is completely independent from the
exploit pack (see [3] for some statistics on the pairings).

Figure 1 depicts the generic scenario of drive-by-
download attack [3, 5]. A victim visits a compromised
web site, from which he/she gets redirected to the exploit
kit page. Various ways of redirection are possible: an
<iframe> tag, a JavaScript based page redirect etc. The
malicious web page then returns an HTML document,
containing exploits, which are usually hidden in an ob-
fuscated JavaScript code. If at least one exploit succeeds,
then the victim gets infected. An exploitation is success-
ful when the injected shellcode successfully downloads
and execute a malicious program on the victim system.

Compromised
Web Site

1) Visit a compromized web site

2) Redirect to an exploit kit

Exploit Kit

3) Visit an exploit kit page

4) Return exploits

5) Download malware

Victim

Figure 1: Scheme of drive-by-download attack

3 Related Work

The infection dynamics enforced by exploit kits are pre-
sented by Provos et al. in [6] and Rajab et al. in [8]. An
overview on the diffusion of exploit kits is also reported
by Grier et al. in [3], where they analyse DNS traffic to-
ward known malware-delivery domains, and by Allodi et
al. in [1], where an analysis of attacks against vulnera-
bilities in the exploit kits is given. These works related
on data recorded “in the wild” and differ therefore from
ours in the experimental approach.

A technical analysis of Exploit kits and their capa-
bilities are outlined by Kotov et al. in [5]. Details on
heap spray attacks are given in [2], in which different
exploits are analysed. However, no systematic experi-
mental methodology is applied to test those exploits.

An overview of good practices when dealing with
malware experiments is provided by Rossow et al. in
[9]. Realism, safeness, data categorisation are all top-
ics covered by the authors and considered in our work
as well. On a similar, more active and investigation-
oriented line, Kanich et al. [4] underline the difficul-
ties of (safely) dealing with the cybercrime environment;
however, while they are addressing multiple interactions
with the underground, we are only measuring one snap-
shot of the underground community in our MalwareLab.

4 A (failed) first experiment design

Exploit kits are advertised on the black markets with a
“self-declared” infection efficacy, expressed as the per-
centage of “incoming users” the costumer may expect to
infect. The advertised ratios are usually around 15-25%
[1]. The frequency and trends of successful exploitations
depends on such factors as an operating system version,
type and version of a browser and its add-ons, presence
of security measures, and general system configuration.

From here we formulated our first question on exploit
kits. Question: How good are their exploits? Our first

experimental design was therefore to measure, by con-
trolling the experiment for operating system and vulner-
able applications, how successful each exploit was at in-
fecting the vulnerable machine. We assumed that the
state of the machine memory (in particular the browser’s
heap) played a role in the successfulness of the ex-
ploit. We manually set up about 40 vulnerable configura-
tions per operating system (Windows XP and its Service
Packs). In order to be sure to measure only one exploit
at a time and avoid noise in the data, we paid extra at-
tention to the pre-existing vulnerabilities on the system.
For example CVE-2006-0003, a vulnerability widely ex-
ploited by most exploit kits, is a “system vulnerability”
that exploit kits reach through the ActiveX interface of
Internet Explorer 6. If we were testing for, say, a vul-
nerability in Java loaded within the context of Internet
Explorer 6, then we would have had no control above
a possible exploitation of CVE-2006-0003, which might
have created the false impression that the Java vulner-
ability was successfully exploited. Avoiding such con-
figurations required a significant amount of time. In the
example above, we run the vulnerable Java plugin in a
non-vulnerable (to our exploit kits) version of Firefox,
and run multiple tests to be sure that Firefox did not play
any role in the observed exploitation/non exploitation of
the Java vulnerability.

We controlled the state of the browser’s heap mem-
ory by automatically generating a random number of
HTML + JavaScript web pages that were loaded onto the
browser before sending a GET request to the exploit kit
tested in that run. However, we ended up measuring only
exploits that worked with 100% efficacy and exploits that
simply never worked. When we studied this issue in
more detail we found out that drive-by-download attacks
exploit the fact that each browser tab is in fact a sepa-
rate process (or a thread) with its own heap and memory
disposition, so the browsing history does not impact the
success of the attack.

Further investigations on the nature of exploit kits and
the exploits they bundle revealed why the design failed.
The exploits we tested either use Java vulnerabilities that
use internal Java VM resources to download and execute
malware (on which Windows defences have no effect)
or use a heap spray attack. The heap spray attack is an
exploitation technique against vulnerabilities in browsers
and other applications that allocate user data in the pro-
cess heap. In the case of browser attacks the idea of
heap spray is to allocate hundreds of megabytes of pay-
load in the heap memory (by creating a big number of
JavaScript string variables) and then trigger the memory
corruption vulnerability to redirect the process (that is the
browser/tab/plugin) execution flow to the lower region
heap. The injected shellcode consists of a huge NOP-
sled (a set of NOP-like instructions) followed by the ac-

2

Table 1: Operating systems and respective release date.
*Configurations are right-censored with respect to the 6 years time window.

Op. system Service Pack Ysys

Windows Xp

None 2001 - 2007
1 2002 - 2008
2 2004 - 2010
3 2008 - 2013*

Windows Vista
None 2006 - 2012

1 2008 - 2013*
2 2008 - 2013*

Windows 7 None 2009 - 2013*
1 2011 - 2013*

tual malicious code. Since the heap is now filled with
the shellcode the probability that the instruction pointer
will reach the address where the malware is loaded ap-
proaches 1. We conclude that exploits bundled in exploit
kits are well engineered and designed to work disregard
of the memory state of the victim machine.

5 Design of the Experiment

With the second experiment design we aim at giving a
quantitative answer to the following research question:

Question: How resilient are exploit kits against software
configuration updates?

To answer this, we test exploit kits in a controlled envi-
ronment, our MalwareLab. The core of our design is the
generation of “reasonable” home-system configurations
to test against the infection mechanism and capabilities
of exploit kits. We test those configurations as running
on Windows XP, Windows Vista and Windows 7. Ta-
ble 1 reports versions and release dates of each operat-
ing system and service pack considered (from here on,
system). After an initial phase of application testing on
the selected systems, we fix the life-time of an operating
system to be 6 years for compatibility of software. Ysys
indicates the working interval of each operating system.

For our experiment we selected 10 exploit kits (see
Table 2) out of the 34, leaked from the black markets, we
gathered. Some of them proved to be not fully-functional
or impossible to be deployed (e.g. because of missing
functions). Out of those that were deployable and armed,
we selected 10 according to the following criteria: (a)
popularity of the exploit kit [10]; (b) year of release; (c)
unique functionality (e.g. only one of multiple versions
of the same kit family is selected).

5.1 Configuration selection

The automated installation of software configurations on
each machine followed the definition of a criteria to se-
lect software to be installed. As often happens, this is

Table 2: List of tested exploit kits
For some exploit kits we could not find the respective release advertisement on
the black markets, and therefore a precise date of release for the product cannot
be assessed. For those (*) we approximate the release date to the earliest mention
of that exploit kit in underground discussion forums and security reports. This
identifies an upper bound of the release date.

Name Version Release Year
1 Crimepack 3.1.3 2010
2 Eleonore 1.4.4mod 2011
3 Bleeding Life 2 2010
4 Elfiesta 1.8 2008*
5 Shaman’s Dream 2 2009*
6 Gpack UNK 2008
7 Seo UNK 2010
8 Mpack 0.86 2007*
9 Icepack platinum 2007
10 Adpack UNK 2007*

Table 3: Software versions included in the experiment.
Overall 9 software versions were excluded from the experiment setup because the
corresponding installation package was either not working or we could not find it
on the web.

Software Versions # of versions
Mozilla Firefox 1.5.0.2 - 17.0.1.0 122
Microsoft Internet Explorer 6-10 5
Adobe Flash 9.0.16.0-11.5.502.135 54
Adobe Reader 8.0.0-10.1.4 17
Java 1.5.0.7-7.10.0.0 49

Total 247

subject to a number of assumptions that define the cri-
teria themselves. For our experiment to be realistic, we
need to build configurations that are reasonable to ex-
ist at a certain point in time. As an example, we con-
sider unlikely to have Firefox 12, released in April 2012,
installed on the same machine with Adobe Flash 9, re-
leased 6 years earlier in June 2006. We therefore fix a
two-years window that defines which software can co-
exist. The window is based on the month and year of
release of a particular software. Since our oldest exploit
kit is from early 2007, we are testing software only re-
leased in the interval (2005,2013). Table 3 shows the
software versions we consider1.

Figure 2 exemplifies the mechanism to create con-
figurations. The algorithm to generate each config-
uration iterates through all years Ycon f from 2006 to
2013, and chooses at random a version of each soft-
ware (including “no version”, meaning that that soft-
ware is not installed for that configuration) that satisfy
YswRel ∈ [Ycon f −1,Ycon f]. For each Ycon f we generate 30
random configurations. Given the construction of YswRel ,
we end up with seven windows and therefore 210 con-

1We did not include Google Chrome as it was first released halfway
through the timeline considered in our experiment (2008). Introduc-
ing Chrome samples in 2008 would have changed the probability of a
particular software to be selected. In turn, this would make comparing
time windows before and after 2008 statistically biased. We plan to
include Chrome in future experiment designs.

3

Each dot represents a tuple {software, version} that is eligible for selection to be

included in a configuration in a certain time window. The probability distribution

of each configuration is uniform (each tuple has the same likelihood of being

selected). We exemplify the selection mechanism by highlighting the {software,

version} tuples with the respective window colour. Note that because we treat

“no software version” as a “version” in the tuple, software can as well be not

selected for a certain configuration.

Figure 2: Random selection of configurations per soft-
ware with sliding windows of two years.

figurations per system reported in Table 1. However, as
underlined in Section 5, for compatibility reasons each
system has a time window of 6 years starting one year
before its release date. Because we want to measure the
resiliency of exploit kits, we keep the number of config-
urations per year constant (otherwise results would not
be comparable between different runs). This means that
some systems are tested, overall, against a lower number
of configurations than others. For example, Windows XP
Service Pack 1 (2002-2008) will be tested only against
configurations in the time windows{[2006, 2008),[2007-
2009))}2, which gives us 60 configurations. Windows
Vista with no Service Pack (2006-2012) will instead be
tested, for the same reason, with 180 configurations. This
guarantees that each exploit kit is tested for each system
against the same number of configurations per year.

The algorithm iterates through each configuration and
runs it against the available exploit kits. Figure 3 is a
representation of an experiment run for each system. At
each iteration i, we select the configuration con f i. If
Ycon fi ∈ Ysys, we automatically install the selected soft-
ware on the virtual machine using the “silent install” in-
terface provided by the vendor or by the msi installer. A
configuration install is successful when all software in
that configuration is installed. For detection of unsuc-

2Note that the last year of the time window is not included. For
example, [2006,2008) includes configurations from January 2006 to
December 2007a.

This flowchart describes a full experiment run for each system in Table 1.

Configurations are generated in chronological order, therefore if the first

control on YSys fails, every other successive configuration would as well and the

experiment ends. Snapshots enable us to re-use an identical installation of a

configuration multiple times.

Figure 3: Flowchart of an experimet run.

cessfully installed configurations, see Section 6.3.
When the installation process ends, we take a “snap-

shot” of the virtual machine. Every run for con fi will
restore and use this snapshot. The advantages of this
are twofold: at first we eliminate possible confounding
factors stemming from slightly different configurations,
because only the exploit kit changes; secondly, this is
also faster than re-installing the configuration every time,
which would have considerably stretched the (already
not short) completion time. When all exploit kits are
tested, a new configuration is eligible for selection.

5.2 Data collection

In the course of our experiment we keep track of (a) the
successfulness of the automated installation of a configu-
ration on a victim machine (VICTIM) at any given time;
(b) the successfulness of infection attempts from exploit
kits. This data is stored in two separate tables, Configu-
rations and Infections respectively.

1. Configurations is needed to control for VICTIM
configurations that were not successfully installed; this
way we can correctly attribute (un)successful exploita-
tion to the right set-ups. This is desirable when looking
for infection rates of single configurations or software.

2. Infections stores information on each particular
configuration run against an exploit kit. We set our in-
fection mechanism to make a call to the Malware Dis-
tribution Server (MDS) each time it is executed on the
VICTIM machine. A “call back” to the MDS can in fact
only happen if the “malware” is successfully executed
on VICTIM. The MDS stores the record in Infections,
alongside (snapshot id, toolkit name, toolkit version,
machine, IP, date, successful). Exploit kits have an “ad-

4

ministrative panel” reporting infection rates [5]. How-
ever, we decide to implement our own mechanism be-
cause (a) it allows us to have more control on the data
in case of errors or unforeseen circumstances; (b) exploit
kits statistics may not be reliable (e.g. developers might
be incentivated in exaggerating infection rates).

To minimise detection [3], some exploit kits avoid at-
tacking the same machine twice (i.e. delivering the attack
the same IP). This behaviour is enabled by an internal
database controlled by the kit, independent from our In-
fections table. In some cases, e.g. when the experiment
run needs to be resumed from a certain configuration,
our Infections table may report un-successful attacks of
an exploit kit, when instead the exploit kit did not delib-
erately deliver the attack in the first place. We therefore
need to control for this possibility by resetting the exploit
kit statistics when needed.

6 Operational realization

In this Section we present the technical implementation
of our experiment design in its three key points: (1) vir-
tualised system infrastructure; (2) automated execution;
(3) operative data collection;

6.1 Virtualised System Infrastructure
When testing for malware, an isolated, virtualised infras-
tructure is desirable [9]. We set up a five machine net-
work that includes a Malware Distribution Server (MDS)
and four machines hosting the Victim Virtual Machines
(VICTIMs). Initially, the setup also included an IDS and
a network auditing infrastructure to log the traffic; how-
ever, to eliminate possible confounding factors caused
by the network monitoring and auditing, we decided to
eliminate this part of the infrastructure from the design
reported here. For practical purposes (i.e. scripting),
all machines are run on a linux-based operating systems,
upon which the virtualised infrastructure is installed.

The purpose of the MDS is to deliver the attacks. Be-
cause of the nature of exploit kits, all we need to attack
VICTIMs is an Apache Web-Server listening on HTTP
port 80 upon which the kits are deployed. As mentioned,
we implemented and armed the exploit kits with our own
“malware”, Casper.exe (our Ghost-in-the-browser [7]) to
help us keep track of infected systems. In order to make
it compatible with all Windows versions we have linked
it statically with the appropiate libraries (e.g. Winsock).
Casper reads a special configuration information file that
we put on each victim machine and send its content to a
PHP script on the MDS by using the Winsock API. This
script (trojan.php) simply stores the received data along
with the VICTIM IP address and timestamp into the In-
fections table in our database.

6.2 Automated execution

We use VirtualBox to virtualise victim machines. In
order to automate the tests we take advantage of the
tool that is shipped with VirtualBox called VBoxMan-
age. It is a command line tool that provides all the
necessary functions to start/stop virtual machines, cre-
ate/delete snapshots and run commands in the guest oper-
ating system. The main program, responsible for running
the experiment is a Python script that makes a sequence
of calls to VBoxMange via subprocess Python module.3

At each run, our scripts read configurations.csv, a
file containing all the generated configurations for that
machine. The scripts iteratively install configurations
upon the VICTIM system. The mapping between soft-
ware version pointers in configurations.csv and the ac-
tual software to be installed is hard-coded in the core
of the implementation. The automated installation hap-
pens via the silent install interface bundled in the instal-
lation packages distributed by most software vendors.
However, because of a lack of a “standard” interface
and the inconsistencies between different versions of the
same software, we could not deploy one-solution for all
software. We used instead a “trial-and-error” approach
and online documentation to enumerate the arguments to
pass to the installers and map them with the right soft-
ware versions. Each configuration is then automatically
and iteratively run against every exploit kit on the MDS.

Despite the experiment being completely automated,
we found that some machines were failing at certain
points in the run, most often while saving snapshots or
uploading files to the VICTIMs. We therefore imple-
mented a “resume functionality” that allows us to “save”
the experiment at the latest valid configuration, and in
case of failure restore the run from that point.

6.3 Operational Data Collection

To reset exploit kits statistics and guarantee the sound-
ness of the statistics collected in the Configuration and
Infections tables, we have implemented a PHP script that
clears the records on delivered attacks the kit keeps. This
step was rather easy to accomplish: we used the code
snippets responsible for statistics reset in each exploit kit,
and copy-pasted them into a single script.

We keep track of software installations on the VICTIM
machines by means of a second dedicated script. To
build it, we manually checked where each program puts
its data on the file system at the installation. Because

3It should be noted that there is Python API for VirtualBox, that
allows to run VirtualBox commands directly from within the Python
environment. We tried to use it during our first (failed) experiment,
but had to switch to VBoxManage, because Python VirtualBox API
functions proved not to be very reliable on our machines.

5

Figure 4: Stacked barplot of configuration installs by
software.

it was impossible to look at every application installa-
tion directory we sampled a subset of programs to check
whether they always put data in the same place. Then we
wrote a batch file that checks for the presence of the cor-
responding data directories after the alleged installation.
The results of the batch file inspection are then passed to
a Python script on the host machine, sent to the MDS,
and stored in the Configurations table on our dataset.

To collect the infection data, when the MDS receives
a call from a VICTIM machine, the MDS adds a record
in the Infections table, setting the successful record to 0
(the default). When executed, Casper connects to the
MDS via a PHP page we set up (namely infection.php).
This updates the successful bit of the corresponding run
record in Infections to 1.

7 Preliminary Experimental Results

The automatic installation procedure proved to be rather
reliable. Figure 4 depicts a 100%-stacked barplot of con-
figuration installs by software. As one can see, Fire-
fox and Java were practically always successfully de-
ployed on the machine. In contrast, 6% of Adobe Ac-
robat and 21% of Flash installations were reported to be
not successfully completed. However, it proved practi-
cally unfeasible to manually check failures of our detec-
tion mechanism (e.g. the files for that software version
on that configuration may be on a different location). We
cannot therefore assess the level of false negatives our
detection mechanism generates.

Figure 5 reports an overview of the infection rates of
all exploit kits in each time window. Intuitively, because
the exploit kits are always the same, the general rate of
infection decreases with more up-to-date software. Ob-
servationally, from 2005 up to 2009 the success rate of

Figure 5: Infection rates per time window.

Figure 6: Infections per time window per exploit kit.

exploit kits seem not to be affected by system evolution.
A marked decrease in the performance of our exploit kits
starts only after 2010. This observation is confirmed by
looking at a break-up of volumes of infections per ex-
ploit kit per year, depicted in Figure 6. Generally speak-
ing, each exploit kit (apart from Bleeding Life) seem to
remain effective mainly within the first three time win-
dows, from 2005 to 2009. Eleonore, CrimePack and
Shaman lead the volume of infections in those years,
with Eleonore peaking at more than 100 infections for
2006-2008, which amounts at about 50% of the configu-
rations for that window. Interestingly, a few exploit kits
seem identical in terms of performance. Seo, mPack,
gPack, ElFiesta, AdPack, IcePack all perform identi-
cally throughout the experiment. Most exploit kits’s ef-
ficacy drops in the fourth time-window, were configura-
tions spanning from 2008 to 2010 are attacked. However,
Bleeding Life is here an outliner, as its efficacy in infect-
ing these machines rises and tops in 2009-2011 to more
than twice its infection rates for 2005-2009. After 2011,

6

however, its infection capabilities drop to zero. In the
last but one time window (2010-2012), the only still ef-
fective exploit kits are Crimepack and Shaman. Overall
three types of exploit kits seem to emerge:

1. Lousy exploit kits. Some exploit kits in the markets
seem to be identical in terms of effectiveness in in-
fecting machines. Not only they perform equally,
but the identical trend throughout our experiment
suggests that the exploits they bundle are them-
selves identical. This may indicate that some ex-
ploit kits may be rip-offs of others, or that an exploit
kit author may re-brand the same product.

2. Long-term exploit kits. From our results, a subset
of exploit kits (in our case Crimepack and Shaman)
perform particularly well in terms of resiliency.
Crimepack and Shaman are the only two exploit
kits that remain active from 2005 to 2012, despite
not being the most recent exploit kits we deployed
(see Table 2). For example, in the period 2008-
2012 Shaman performs up to two times better than
Eleonore, despite being two years older. In other
words, some exploit kits appear to be designed and
armed to affect a wider variety of systems in time
than the competition.

3. Time-specific exploit kits. As opposed to long-term
exploit kits, some kits seem to be extremely effec-
tive in short periods of time only to “die” shortly af-
ter. Eleonore and Bleeding Life belong to this cat-
egory. The former achieves the highest amount of
infection per time window in 2006-2008, and drops
then to the minimum within the next two years. The
latter is the only exploit kit capable of infecting “re-
cent” machines, i.e. those with configurations since
2009 on. Bleeding Life was in particular clearly de-
signed to attack machines around the period of the
release of the kit (2010).

8 Challenges and limitations

The experimental approach introduced with this work
also introduces a number of technical and design chal-
lenges that we believe are worth further discussion.

1. Scale of the experiment. We collected only a lim-
ited amount of software to be tested in our configura-
tions. This is due both to the lack of an automated way
to collect “historical” software versions, and for deploy-
ment reasons: unfortunately, no standard interface to au-
tomatically deploy an application on a system exists. Us-
ing Microsoft MSI demonstrated to be not universally ef-
fective, as some (in particular old) software failed to be
installed that way. We had therefore to manually check
for the “silent install” arguments to give in input to the

software install package. Apart from being a long op-
eration to complete, it is also obviously quite prone to
errors. These errors may be responsible for the failed in-
stallations reported in Figure 4. To enhance the scope of
the experiment and configure more “realistic” machines
with more software (e.g. Apple Quicktime, Real Player,
Opera and Chrome) and respective versioning manage-
ment, an automated way to gather and deploy such soft-
ware would positively enhance both the representative-
ness and the reliability of the experiment. However, we
are currently not aware of any efficient way to do that.

2. Configuration checking. Because serial, auto-
mated software installations may be subject to failure,
a reliable detection mechanism for failed installs should
be on top of the configuration setup process. Our im-
plementation guarantees no false positives (i.e. configu-
rations that were not installed but reported as such), but
its quality in terms of false negatives is not clear. Still,
to manually check its reliability is practically infeasible,
given the volume of possible configurations to inspect.

3. Assumptions. This experiment is run on top of
three main assumptions:
(a.) Regardless of the release date of an exploit kit, the
probability of attacking a configuration does not vary
with the year of the configuration. We believe that it
is reasonable to assume that configurations from 2006
are still visible in the wild in 2012; however, to guar-
antee the realism of the experiment a “discount factor”
should be applied to old machine runs. With the cur-
rent design, older machines are run against old exploit
kits with the same frequency as against new ones. This
represents a threat to the realism of the experiment, as
the probability of receiving a connection from a partic-
ular configuration is likely to decrease with time (i.e.
Prt(Con fx) > Prt+1(Con fx)). This discount factor is
however hard to assess, and further investigations may
be needed to discard unrealistic or biased assumptions.
(b.) Software configurations are valid solely within a cer-
tain time-frame. We fixed a two-years time window for
software deployment. We only have folk knowledge to
support the validity of this assumption. This point is
crucial as a different definition of “time window” may
change the results of the experiment (e.g. see long term
and short term exploit kits above).
(c.) Exploit functionality, differently from malware’s, is
not affected by virtual machines. We are aware that many
malicious programs have virtual machine detection func-
tionalities, that prevent them from being installed on vir-
tual environments [9]. However, to the best of our knowl-
edge no exploit detected in the wild and delivered by an
exploit kit performs such actions.

4. Technical challenges. The major issue in imple-
menting the malware experiment is making it realistic.
In our design we make a victim browser visit the mali-

7

cious web page and hold it for 60 seconds. In real world,
however, a lot of exploits get delivered by pop up win-
dows and banners which a victim user tends to close on
sight [11]. Thus, introducing the ‘time of exposure” of
the victim to the malicious page could increase the real-
ism of the experiment. Another aspect of a victim ma-
chine is its hardware configuration. We assign 1GB of
RAM and 1-core processor for each VICTIM, but this
may as well affect the realism of the experiment. For
instance, we found that some exploits allocate so much
data in the browser address space that on machines with
<300MB of RAM the virtual memory and swap file of
the VICTIM runs out, which eventually forces the kernel
to kill the process. Assessing to what degree machine
diversity is desirable is an open problem of our design.

9 Conclusion & lessons learned

In this paper we presented our MalwareLab, a platform
to experiment with cybercrime attack tools. The presen-
tation was focused on the technical and design issues
we faced. As a result, we can synthesise the following
lessons learned from our experience:

1. Exploit and possibly malware developers put extra-
effort in enhancing the reliability of their products.
This translates in hard-to-control experiments, be-
cause the number of possible confounding variables
the experimenter should control for grows unpre-
dictably.

2. Controls must be checked experimentally. Tech-
nically sound assumptions on the functionality of
software artefacts may prove to be completely
wrong or uneffective for the particular exploit or
malware that is being tested.

3. Experiments always need a “resume point” from
where restart failed runs. However, because of
technical or operative requirements a resume point
might not coincide with the last valid experiment
run. To avoid biased measurements is important to
assure that the experiment is restored to its origi-
nal state at the “moment of the resume”. This is
particularly relevant when the experimental setup is
distributed on a network of systems, and the exper-
iment fails on a single, or subset of, machines.

At a technical level, we find that exploit kits show
different capabilities in terms of resiliency of infections
in time. Our answer to the research question outlined in
Section 5 is therefore the following:

Answer: a clear distinction between high-quality and
low quality products exists. Some exploit kits seem engi-
neered to be effective for long periods of time, at the cost

of lower top-rates of infection; other exploit kits instead
seem developed to gather as many infections as possi-
ble in short periods of time, possibly around the time of
their release. These kits achieve higher top-rates than
the competition, but their resielincy is lower.

Acknowledgments

This work was partly supported by the projects EU-
IST-NOE-NESSOS and EU-SEC-CP-SECONOMICS
and MIUR-PRIN-TENACE Projects and the European
Union by the Erasmus Mundus Action 2 Programme.

References
[1] ALLODI, L., WOOHYUN, S., AND MASSACCI, F. Quantitative

assessment of risk reduction with cybercrime black market mon-
itoring. In In Proc. of IWCC’13 (2013).

[2] CORELAN, T. Exploit writing tutorial part
11 : Heap spraying demystified. https:

//www.corelan.be/index.php/2011/12/31/

exploit-writing-tutorial-part-11-heap-spraying-demystified/,
checked on 27.04.2013.

[3] GRIER, C., BALLARD, L., CABALLERO, J., CHACHRA, N.,
DIETRICH, C. J., LEVCHENKO, K., MAVROMMATIS, P., MC-
COY, D., NAPPA, A., PITSILLIDIS, A., PROVOS, N., RAFIQUE,
M. Z., RAJAB, M. A., ROSSOW, C., THOMAS, K., PAXSON,
V., SAVAGE, S., AND VOELKER, G. M. Manufacturing com-
promise: the emergence of exploit-as-a-service. In Proceedings
of the 2012 ACM conference on Computer and communications
security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 821–
832.

[4] KANICH, C., CHACHRA, N., MCCOY, D., GRIER, C., WANG,
D. Y., MOTOYAMA, M., LEVCHENKO, K., SAVAGE, S., AND
VOELKER, G. M. No plan survives contact: experience with
cybercrime measurement. In Proc. of CSET’11 (2011).

[5] KOTOV, V., AND MASSACCI, F. Anatomy of exploit kits. pre-
liminary analysis of exploit kits as software artefacts. In Proc. of
ESSoS 2013 (2013).

[6] PROVOS, N., MAVROMMATIS, P., RAJAB, M. A., AND MON-
ROSE, F. All your iframes point to us. In Proc. of USENIX’08
(2008), pp. 1–15.

[7] PROVOS, N., MCNAMEE, D., MAVROMMATIS, P., WANG, K.,
AND MODADUGU, N. The ghost in the browser analysis of web-
based malware. In Proc. of HOTBOTS’07 (2007), pp. 4–4.

[8] RAJAB, M., BALLARD, L., JAGPAL, N., MAVROMMATIS, P.,
NOJIRI, D., PROVOS, N., AND SCHMIDT, L. Trends in circum-
venting web-malware detection. Tech. rep., Google, 2011.

[9] ROSSOW, C., J. DIETRICH, C., GRIER, C., KREIBICH, C.,
PAXSON, V., POHLMANN, N., BOS, H., AND VAN STEEN, M.
Prudent practices for designing malware experiments: Status quo
and outlook. In Proc. of the 33rd IEEE Symp. on Sec. & Privacy
(2012).

[10] SYMANTEC. Analysis of Malicious Web Activity by Attack
Toolkits, online ed. Symantec, Available on the web at
http://www.symantec.com/threatreport/topic.jsp?
id=threat activity trends&aid=analysis of malicious web activity,
2011. Accessed on June 1012.

[11] WASH, R. Folk models of home computer security. In Proc. of
SOUPS’10 (2010), ACM.

8

