
Mapping Data in Peer-to-Peer Systems:
Semantics and Algorithmic Issues

Anastasios Kementsietsidis Marcelo Arenas Renée J. Miller
Department of Computer Science

University of Toronto
{tasos,marenas,miller}@cs.toronto.edu

ABSTRACT
We consider the problem of mapping data in peer-to-
peer data-sharing systems. Such systems often rely on
the use of mapping tables listing pairs of correspond-
ing values to search for data residing in different peers.
In this paper, we address semantic and algorithmic is-
sues related to the use of mapping tables. We begin by
arguing why mapping tables are appropriate for data
mapping in a peer-to-peer environment. We discuss al-
ternative semantics for these tables and we present a
language that allows the user to specify mapping tables
under different semantics. Then, we show that by treat-
ing mapping tables as constraints (called mapping con-
straints) on the exchange of information between peers
it is possible to reason about them. We motivate why
reasoning capabilities are needed to manage mapping
tables and show the importance of inferring new map-
ping tables from existing ones. We study the complexity
of this problem and we propose an efficient algorithm
for its solution. Finally, we present an implementation
along with experimental results that show that mapping
tables may be managed efficiently in practice.

1. INTRODUCTION
Traditionally, data integration and exchange between

heterogeneous data sources is provided mainly through
the use of views, i.e., queries that map and restructure
data between the heterogeneous schemas [13, 20]. Since
queries depend on the underlying schemas, to correctly
restructure and map data, the sources must be willing
to share their schemas and cooperate in establishing and
managing the queries. In our work, we consider peer-to-
peer settings in which such close cooperation is either
not desirable (perhaps for privacy reasons) or not feasi-
ble (perhaps due to resource limitations or the dynamic
nature of the data structures) [11, 17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

To find data when there is no agreement on the logi-
cal design of data (or on how different logical designs
correspond), we must focus on data values and how
values correspond. If we can map values, particularly
identifying values (names or keys), we can still request
and exchange specific data of interest. Indeed, this idea
provides the basis for data exchange in current peer-to-
peer systems. In file-sharing systems, like Gnutella [2]
and Napster [7], querying is performed by using sim-
ple value searches on file names [19]. So queries are of
the form: “Retrieve all files named X (or containing the
phrase X)”. This simple form of search has proven ef-
fective for so many applications, that there has been a
flurry of research on making such searches more efficient
and scalable [24; 26, and others]. This scheme works in
domains where there is consensus on what the names
should be. So for music files, where there is a stan-
dard, commonly accepted name for each song or album,
data can be shared because each peer uses the same (or
similar) values to name files.

However in other domains, where there is no accepted
naming standard, different peers may necessarily have
had to develop their own naming conventions. Stan-
dards often emerge after many sources have set up their
own naming conventions. There may be many appli-
cations that depend on the use of the internal conven-
tions. So, migration to conform to external standards
is time-consuming and expensive [12]. To search data
in such environments, people have made use of map-
ping tables that store the correspondence between val-
ues. At their simplest, these tables are binary tables
containing pairs of corresponding identifiers from two
different sources. With such tables, we can still use our
simple value searches but for a peer to find a file called
X it first consults a (shared or local) mapping table to
find the name(s) of X in each acquainted peer. In gen-
eral, we may need to map values containing multiple
attributes. For example, geographic locations may be
indicated by some form of federal postal code in one
peer and by pairs of area codes and town names in a
second. However, we can still use these mapping ta-
bles to exchange data related to specific values. The
query “retrieve all information related to postal code
X” in peer one becomes “retrieve all information re-
lated to the area code, town pair (Y, Z)” in peer two.
Or the translation may be to a set of values if the map-

ping is not one-to-one or many-to-one. Note that data
exchange in more structured data management settings
(as opposed to file sharing settings) is often achieved us-
ing self-describing data models. Since there is no a pri-
ori agreement on the structure of the result, the data,
once found, is exchanged with its descriptive schema.
Nonetheless, simple value queries, where there is agree-
ment on how values correspond, can be quite effective
for facilitating search and exchange between data man-
agement systems.
Contributions: Mapping tables represent expert knowl-
edge and are typically created by domain specialists.
Indeed, currently the creation of mapping tables is a
time-consuming and manual process performed by a set
of expert curators. While widely used, especially in the
biological domain [15], we are aware of no data manage-
ment tools currently designed to facilitate the creation,
maintenance and management of these tables. In this
work, we discuss alternative semantics for these tables
and we present a language that allows the specification
of mapping tables under different semantics. We illus-
trate how automated tools can help managing mapping
tables between multiple sources by inferring new map-
pings (that is, new entries in a mapping table). Specif-
ically, we show that by treating mapping tables as con-
straints (called mapping constraints) on the exchange of
information between peers it is possible to reason about
them and check their consistency. Note that these con-
straints are not on the peers themselves (or their con-
tent), only on the way in which search values are trans-
lated. We study the complexity of the inference and
consistency problems and we propose an algorithm for
solving these problems. Finally, we present an imple-
mentation of our algorithm along with experimental re-
sults which show that, by using our results, mapping
tables may be managed efficiently in practice.

The work presented in this paper is part of the Hype-
rion project [4]. The main goals of the project are: the
definition of a peer-to-peer data management architec-
ture; the study of viable data integration, exchange, and
mapping mechanisms; the development of algorithms
for the efficient search, retrieval and exchange of data
among peers. Mapping tables provide the foundation
for exchanging information between peers.
Outline of the paper: In Section 2, we illustrate
our techniques with a specific example. Section 3 for-
mally introduces the notion of mapping tables. Then,
in Section 4, we present the benefits of considering map-
ping tables as constraints and we introduce a language
for specifying how tables may be combined. Section 5
analyzes the complexity of both the inference and the
consistency problems. Section 6 presents an efficient
algorithm for solving these problems while Section 7
presents its implementation along with experimental re-
sults. Section 8 describes related work, while Section 9
offers a summary of the conclusions.

2. MOTIVATING EXAMPLE
Consider an example drawn from the domain of bi-

ological databases. Genomic data can be found in a

large number of authoritative sources ranging from well-
known public sources, to ones specific to individual re-
search labs. The examples in this paper will be drawn
from public sources including GDB [1] (a gene database),
SwissProt [8] (a protein database), and MIM [6] (a data-
base about genes and genetic disorders related with these
genes). Integration of these sources to provide uni-
form access for scientists, although extremely desirable,
seems unattainable due to a myriad of political, financial
and technical reasons [15]. Among the technical reasons
is the inherent heterogeneity of the sources which range
from relational databases to formatted files or spread-
sheets. In addition, the schemas and formats of the
sources evolve rapidly in response to new biological tech-
niques and requirements.

To achieve some degree of integration, biologists com-
monly use what we have called mapping tables. For ex-
ample, mapping tables can be used to relate gene data
in one source to the related protein data in another
source (where the gene is said to encode for the pro-
tein). Note that the mapping table is not necessarily a
function, there may be many proteins related to a gene.
Even a mapping table relating gene identifiers may be
many-to-many. This occurs often in biological sources
where there may be aliases for the same identifier. As
identifiers are updated, old identifiers may need to be
kept. For example, they may refer to the content of
static (non-updateable) sources such as journal articles
which may contain antiquated names and identifiers for
entities.

In what follows, we discuss some of the main char-
acteristics and uses of mapping tables. First, we show
that mapping tables can be used to associate values both
within and across domains. Second, we show that map-
ping tables are an appropriate tool to use in peer-to-peer
systems since they respect the autonomy of the peers.
Finally, we motivate the need for alternative semantics
in mapping tables and we present some examples that
motivate why reasoning capabilities are desirable in an
environment where mapping tables are used.

Associations within and Across Domains: No-
tice that by using mapping tables we are able to asso-
ciate seemingly unconnected databases, something that
has been called mediation across multiple worlds [21]. In
a typical integration scenario, we are often dealing with
one world, for example, a set of sources all containing in-
formation about genes. However, there are situations,
where sources from disjoint worlds can be associated
since the corresponding worlds are semantically close
to each other. As an example, the GDB database has a
mapping table in which it stores associations between its
gene identifiers and protein identifiers from SwissProt.
Using the mapping table, users of the GDB database
are able to retrieve, for each gene, related protein(s)
from SwissProt. An example of such a table is shown
in Figure 1. While we have simplified (and shortened!)
the data in the figure for exposition, the experiments
we report in Section 7 use the actual GDB to SwissProt
mapping table containing 8,780 entries.

Peer Autonomy: Autonomy is of utmost impor-
tance in any peer-to-peer system and in many types of

GDB id SwissProt id
GDB:120231 P21359
GDB:120231 O00662
GDB:120231 Q9UMK3
GDB:120232 P35240
GDB:120233 P01138

Figure 1: Mapping Table 1

Open-world Closed-world
present Any indicated
X-value Y -value Y -values
missing Any No
X-value Y -value Y -value

Table 1: Alternative open/closed world seman-
tics

networked applications. Mapping tables respect the au-
tonomy of the sources that they associate. They are
minimally invasive in that they permit searching across
peers, but do not restrict the operation of peers in any-
way beyond the agreement on values expressed in the
tables. To see this, notice that the mapping table shown
in Figure 1 does not express how genes and proteins are
related in general, nor how they should be represented
or stored in their respective sources. Rather, it only
encodes the fact that a domain expert has determined
that certain genes are related to certain proteins.

Semantics: Domain specialists have varying levels of
expertise. Mapping tables should record not only the as-
sociations suggested by the domain specialists but also
their confidence on these associations. In what follows,
we discuss alternative semantics for mapping tables and
show how these can be used to express partial or com-
plete knowledge for a domain of interest.

A mapping table consists of two disjoint sets of at-
tributes X and Y (we use a double line in figures to
distinguish between the two). A tuple (x, y) in the map-
ping table is called a mapping and it indicates that the
value x is associated with y. We say that an X-value
appearing in a mapping table follows the open-world se-
mantics if it can be associated with any Y -value. Under
this semantics, the table encodes only partial informa-
tion about X-values that appear in it. Alternatively,
we say that an X-value appearing in the mapping ta-
ble follows the closed-world semantics if it can only be
associated with the indicated Y -values. Under this se-
mantics, the table encodes complete information about
the X-values that appear in it. Similarly, for an X-
value not present in a mapping table, we say it follows
the open-world semantics if it can be associated with
any Y -value, while it follows the closed-world semantics
if it cannot be associated with any Y -value. Tables 1
summarizes the above discussion.

Thus, we are led to a space of four alternative seman-
tics for mapping tables. Specifically, under the open-
open-world (OO-world) semantics both the X-values pre-
sent in the table and those missing follow the corre-

sponding open-world semantics. This semantics essen-
tially allows the association of any X-value with any
Y -value and is thus of no practical interest. Under the
open-closed-world (OC-world) semantics the X-values
present in the table follow the open-world semantics,
while those missing follow the corresponding closed-world
semantics. Given such a semantics, a mapping table es-
sentially specifies the set of X-values that can be mapped
to any Y -value, while the Y -values indicated on the ta-
ble are not taken into consideration. As such, the se-
mantics is of little practical use to a specialist aiming
to record particular mappings between specific X and
Y -values. Of more practical use, a mapping table under
the closed-open-world (CO-world) semantics is capable
of representing partial knowledge. This proves useful
in situations where the domain specialist is an expert
only on a subset of the domain. As such, she is able to
record her expertise by constraining the Y -values with
which specific X-values can be associated. However,
since she is agnostic regarding the remaining X-values,
she allows them to be associated with any Y -value. The
closed-closed-world (CC-world) semantics is useful for
representing complete knowledge for a domain. Under
this semantics, a specialist specifies the complete set of
correct mappings. Since the latter two semantics are of
most interest, we focus our attention only on these two.

Automated discovery of mappings: Given a se-
mantics for mapping tables, we would like to reason
about them. To achieve this, we treat mapping ta-
bles as constraints on the exchange of information. The
simplest rule for combining mapping tables is to take
their conjunction, i.e., to look for all the associations
that satisfy all constraints. Consider the mapping ta-
bles shown in Figure 2. Suppose domain specialists
have specified a CO-world semantics for all three ta-
bles. The first table indicates that pairs of genes and
proteins can together be associated with a genetic dis-
order. Table 2(b) associates genes with proteins while
Table 2(c) associates genes directly with genetic dis-
orders. Users may use Table 2(c) directly in a query
to find all genetic disorders associated with a specific
gene. However, a user may also wish to make use of
the expertise of the domain specialists who created Ta-
bles 2(a) and 2(b) to discover if there are additional
disorders that may be associated with this gene. Un-
der a CO-world semantics, the mapping (GDB:120231,
193520) can be derived from these three tables since we
can find a witness tuple that involves all the attributes
of these tables and has GDB:120231 as GDB id and
193520 as MIM id. This tuple is t = (GDB:120231,
O00662, 193520). Notice that t satisfies Table 2(c) since
GDB:120231 is not mentioned there. On the other hand,
the mapping (GDB:120231, 162200) is not valid with re-
spect to these mapping tables, since there is no witness
tuple for these values (no value of SwissProt id satis-
fies the conditions mentioned above). Alternatively, the
specialists could have used a CC-world semantics. If
one or more of the mapping tables in Figure 2 have a
CC-world semantics, the set of mappings between GDB
and MIM changes. In this paper, we present solutions
for inferring new mappings under both semantics.

GDB id SwissProt id MIM id
GDB:120231 P21359 162200
GDB:120231 O00662 193520
GDB:120232 P35240 101000

Mapping table 2(a)

GDB id SwissProt id
GDB:120231 O00662

Mapping table 2(b)

GDB id MIM id
GDB:120233 162030

Mapping table 2(c)

Figure 2: An initial set of mapping tables

3. MAPPING TABLES
In what follows, we offer a formal definition of map-

ping tables. We use the relational model to present our
ideas (since mapping tables fit conveniently into the re-
lational model). However, our solutions do not require
that any of the peers use this model. Indeed, our solu-
tions are designed to work with peers that are informa-
tion retrieval systems, DBMS, or file-sharing systems.

We use the letters A,B, C, D to denote individual at-
tributes. For an attribute A, dom(A) is the domain
of A. The domains we consider are the typical do-
mains found in most relational databases, such as, in-
tegers, strings, real numbers, booleans etc. The let-
ters U, X, Y are used to denote sets of attributes. Let-
ter R is used to denote a relation schema. We use
the notation R[U] to explicitly show the attributes of
a relation schema. Letter r is used to denote a re-
lation instance. The letter t is used to represent tu-
ples. We use t[X] to denote the values of tuple t in
the attributes of X. Let X = {A1, A2, . . . , Ak} and let
dom(Ai) (i ∈ [1, k]) denote the domain of attribute Ai.
Then, dom(X) = dom(A1)× dom(A2)× . . .× dom(Ak).
Finally, we use standard relation algebra operators such
as projection (πX) and selection (σX=x).

The values appearing in the mappings (and mapping
tables) presented thus far are only constants. However,
to represent the different semantics of mapping tables
(CO-world or CC-world semantics) it is necessary to in-
troduce variables. Specifically, let V be a set of variables
where V ∩dom(A) = ∅, for every attribute A. We define
a mapping to be a tuple which may contain constants
or variables (such tuples are usually called free tuples in
the literature [10]). More formally:

Definition 1. Given a set of attributes U , t is a
mapping over U if for each A ∈ U , t[A] is either a
constant in dom(A), a variable in V or an expression
of the form v − S, where v ∈ V and S is a finite subset
of dom(A).

To describe a set of mappings, we use the term “map-
ping table” instead of the term “mapping relation”.
This is consistent with the literature where the term
“table” has been used to denote relations containing
variables [10]. Moreover, we impose the restriction that
each variable appears in at most one mapping. This
restriction is consistent with our intuition that two dif-
ferent mappings in a mapping table are completely inde-
pendent. The following definition formalizes the above.

Definition 2. Let X and Y be nonempty disjoint
sets of attributes. A mapping table m from X to Y

is a finite set of mappings over X ∪ Y such that each
variable appears in at most one mapping.

Variables offer a compact and convenient way of rep-
resenting common associations between values. An ex-
ample of such an association is the identity.

Example 3. Consider a biological database at the Uni-
versity of Toronto and assume that it uses the same
identifiers as the GDB database. We can represent this
mapping table as a list of mappings of the form (id, id),
where id is an identifier in the GDB database. Alter-
natively, we can construct a more succinct, data inde-
pendent, mapping table containing the single mapping,
(v, v), where v is a variable.

Without variables, users must manually specify in
their queries whether an identity mapping should be
used. In mapping SwissProt data to GDB, the answer
is likely no, while as the above example shows, other
searches should make use of the identity. Variables also
permit a simple representation for alternative mapping
table semantics.

Example 4. Consider the mapping tables in Figure
3. The mapping table on the top of the figure uses the
CO-world semantics. Thus, any gene, apart from the
ones explicitly mentioned, can be associated with any
protein. Now, consider the table on the bottom of the
same figure which uses CC-world semantics. The first
two mappings of this table are identical with the ones ap-
pearing in the top table. The last mapping states that all
GDB ids, except GDB:120231 and GDB:120232, may
be mapped to any protein. Notice that the top table with
CO-world semantics expresses the same associations as
the bottom table with the CC-world semantics.

We conclude this section by introducing the notion of
valuation which will prove useful in the following para-
graphs.

Definition 5. A valuation ρ over a mapping table
m is a function that maps each constant value in m to
itself and each variable v of m to a value in the inter-
section of the domains of the attributes where v appears.
Furthermore, if v appears in an expression of the form
v − S, then ρ(v) 6∈ S.

4. MAPPINGS AS CONSTRAINTS
In this section, we view mapping tables as constraints

(called mapping constraints) on the exchange of infor-
mation between the sources. In doing so, we show that

GDB id SwissProt id
GDB:120231 P21359
GDB:120232 P35240

GDB id SwissProt id
GDB:120231 P21359
GDB:120232 P35240

v - {GDB:120231, GDB:120232} v′

Figure 3: CO-world vs. CC-world semantics

we are able to reason about mapping constraints, that
is, given a set of mapping constraints, we are able to
infer new mapping constraints and determine if a set of
constraints is inconsistent. In the following paragraphs
we consider first how a single mapping table can be
treated as a constraint. Then, we consider how sets of
mapping constraints can be combined.

4.1 Mapping Constraints
Consider relations r and r′ with schemas R[U] and

R′[U ′], respectively, and also consider a mapping table
m from X to Y , where X ⊆ U and Y ⊆ U ′. Let r′′

be the Cartesian product of relations r and r′ where
every tuple t of r is related to every tuple t′ of r′.
Given a mapping table m from X to Y , we can use
m as a condition to filter the above Cartesian product.
Specifically, let t′′ be a tuple of the Cartesian prod-
uct. Tuple t′′ must be removed from relation r′′ if there
is no valuation ρ over m such that t′′[X] ∈ πX(ρ(m))
and t′′[Y] ∈ πY (σX=t′′[X](ρ(m))). The intuition behind
our definition is as follows. Consider the mapping ta-
ble m from X to Y , a valuation ρ over m and a value
x ∈ πX(ρ(m)). Then, the value x is associated with a
certain set of values in the domain of Y , namely, with
the set πY (σX=x(ρ(m))). As a result, a tuple t ∈ r such
that t[X] = x can be mapped, with respect to map-
ping table m and valuation ρ, only to tuples t′ ∈ r′ for
which t′[Y] ∈ πY (σX=x(ρ(m))). The above condition
guarantees exactly this.

Example 6. In Figure 4, the first two relations cor-
respond to relations in the GDB and SwissProt databases,
respectively. The third relation is a mapping table be-
tween GDB and SwissProt which uses the CC-world se-
mantics. If we take the Cartesian product of the first
two relations and use the mapping table as a condition
to filter this product, we get the relation at the bottom
of the same figure. For example, the first tuple in this
relation is valid since there is a valuation ρ such that
ρ(v) = GDB:120231 and ρ(v′) = P21359.

By treating a mapping table as a constraint, we are
able to identify (in)valid mappings between objects that
reside in different sources. That is, given a set of mapped
objects we are in a position to tell whether they satisfy
a mapping table m. We now formalize the above and
introduce a new type of constraint, called a mapping
constraint. Then, we introduce the notion of satisfiabil-
ity for these new constraints and we discuss a number
of issues that arise.

Let m be a mapping table from X to Y . We define
Ym(x), where x ∈ dom(X), as follows:

Ym(x) = {y | ∃t ∈ m and there exists valuation ρ

over m such that ρ(t[X]) = x and ρ(t[Y]) = y}.

Notice that Ym(x) contains all the values in dom(Y)
with which value x ∈ dom(X) can be mapped, under
the mapping table m.

Definition 7. Let U = X ∪ Y . An expression of
the form X

m
−→ Y is a mapping constraint over U . A

U-tuple t satisfies X
m
−→ Y , denoted as t

�
X

m
−→ Y ,

if t[Y] ∈ Ym(t[X]). Furthermore, a relation r satisfies

X
m
−→ Y if every t ∈ r satisfies X

m
−→ Y .

As an example, in Figure 4, the relation at the bot-
tom of the figure satisfies the constraint GDB id

m
−→

SwissProt id, where m is the mapping table shown in
4(c). We use the letter µ to denote a mapping con-
straint, and Σ to denote a set of mapping constraints.

Notice that the previous definition assumes a CC-
world semantics. We choose this semantics since we can
translate (as shown in Example 4) any constraint µ un-
der the CO-world semantics into a constraint µ′ under
the CC-world semantics such that r satisfies µ (under
the CO-world) if and only if r satisfies µ′ (under the
CC-world). From now on, we assume that (by default)
every mapping constraint is under the CC-world seman-
tics. Every time that we mention a mapping constraint
µ under the CO-world semantics, we assume that we are
referring to the mapping constraint µ′ mentioned above.

4.2 Mapping Constraint Formulas
In this section, we introduce a language which al-

lows us to form expressions that combine mapping con-
straints by using conjunction (∧), disjunction (∨) and
negation (¬). Before we formally introduce the lan-
guage, we motivate the use of such expressions.

Example 8. Assume that mapping constraints µ1 and
µ2 shown in Figure 5 were constructed by two differ-
ent curators. How should these mapping constraints be
combined? Clearly, this is a decision that only the user
can make. For instance, if the user trusts both cura-
tors, then she will probably take the union of the map-
ping constraints (represented by µ1 ∨µ2). Alternatively,
if the user only wishes to use mappings that have been
validated by both curators, then she would use the inter-
section of mapping constraints (represented by µ1 ∧µ2).

In what follows we introduce a language for mapping
constraint formulas (MCF) that can be used to express
situations such as the ones mentioned in the example.
The grammar of the language is defined as follows:

MCF := (MCF ∧ MCF) | (MCF ∨ MCF) | ¬MCF | µ

where µ is the only terminal symbol representing a map-
ping constraint defined over some mapping table m. We
have already defined what it means for a tuple to sat-
isfy a mapping constraint µ. We now offer a definition of
what it means for a tuple to satisfy a mapping constraint
formula defined over a set of mapping constraints.

GDB id Gene Name
GDB:120231 NF1
GDB:120232 NF2
GDB:120233 NGFB

4(a) Relation in GDB

SwissProt id Protein Name
P21359 NF1
P35240 MERL

4(b) Relation in SwissProt

GDB id SwissProt id
GDB:120232 P35240

v − { GDB:120232 } v′ − { P35240 }

4(c) Mapping table from GDB to SwissProt

GDB id Gene Name SwissProt id Protein Name
GDB:120231 NF1 P21359 NF1
GDB:120232 NF2 P35240 MERL
GDB:120233 NGFB P21359 NF1

Tuples that can be mapped from GDB to SwissProt

Figure 4: Using mapping tables as constraints

GDB id SwissProt id
GDB:120231 P21359
GDB:120231 Q9UMK3

(a) Mapping constraint µ1

GDB id SwissProt id
GDB:120231 Q14930
GDB:120231 Q9UMK3

(b) Mapping constraint µ2

Figure 5: Constraints from GDB to SwissProt

Definition 9. Consider mapping constraint formula
φ over a set of attributes U and a U-tuple t.

• If φ = µ, then t
�

φ iff t
�

µ.
• If φ = ¬φ1, then t

�
φ iff it is not true that t

�
φ1.

• If φ = φ1 ∧ φ2, then t
�

φ iff t
�

φ1 and t
�

φ2.
• If φ = φ1 ∨ φ2, then t

�
φ iff t

�
φ1 or t

�
φ2.

Apart from combining mapping constraints, mapping
constraint formulas augment our expressiveness, as the
following example illustrates.

Example 10. The identity between pairs of attributes
A, B and C, D can be specified by means of the map-
ping constraint µ : AB

m
−→ CD with mapping table m

containing only the mapping (u, v, u, v), where u and v
are variables. Assume that a user wants to specify a
mapping constraint where the values in A, B are iden-
tical to the values in C, D except for the set of tuples
{(ai, bi) | i ∈ [1, n]} ⊆ dom(A) × dom(B). How should
mapping constraint µ be modified to express this?

By definition, through mapping constraints, we are
only able to exclude certain values, of some column,
from participating in any mapping. Mapping constraint
formulas allow us to do the same thing for whole tuples.
Going back to our example, for every i ∈ [1, n], let µi :

AB
mi−−→ CD be a mapping constraint with mapping ta-

ble mi containing only the mapping (ai, bi, ai, bi). Then,

the following mapping constraint formula expresses the
desired constraint: µ ∧ ¬µ1 ∧ · · · ∧ ¬µn.

A final note, regarding the introduction of negation.
In the next section, we show that it allows us to have a
uniform approach to solve the two problems considered
in this paper: consistency and inference.

5. CONSISTENCY AND INFERENCE
Given that considerable effort is put into creating

mapping tables we have found that curators and users
alike often need the following capabilities.

Infer new mapping tables: A common task is to
find the set of all mapping tables that are valid over a
specific set of attributes U . To do this, we must combine
the knowledge from the mapping tables available in a
network of peers. As we show experimentally in Section
7, a set of mapping tables, viewed as constraints, can
often be used to infer additional mappings – mappings
that are not explicitly represented in any peer.

Determine consistency of mapping constraints:
Curators edit, copy, or merge mapping tables that come
from a variety of sources and it can be a cumbersome
task to ensure that the mapping constraints of one table
do not invalidate those expressed by another. As an ex-
ample, note that the conjunction of mapping constraints
shown in Figure 2 is inconsistent under the CC-world
semantics. Even for this small example, inconsistency
is not apparent and close inspection of the mappings is
necessary to discover this. We want to provide auto-
mated techniques to help curators determine whether a
set of mapping constraints is consistent.

Inferred mappings and knowledge of inconsistencies
may be directly useful to a curator. In addition, both
of these mechanisms play an important role in helping a
curator understand and correctly specify the semantics
of a set of mapping constraints. We do not expect a cu-
rator to write down a set of complex constraint formulas
unaided. Rather, we expect that automated inference
and consistency checks will help a curator understand
whether a default semantics (perhaps the disjunction of
a set of constraints under the CC-world semantics) is
appropriate for a specific set of domains.

5.1 Problem Definition
Given a mapping constraint formula (MCF) φ over a

set of attributes U , we say that φ is consistent if there
exists a nonempty relation r of U that satisfies φ. Fur-
thermore, given a set of MCFs Σ ∪ {φ} over U , we say
that Σ implies φ, denoted by Σ |= φ, if for every relation
r of U , if r |= Σ then r |= φ. The consistency problem
is the problem of determining whether a given MCF is
consistent, and the inference problem is the problem of
verifying whether a set of MCFs implies another MCF.

The consistency and inference problems for MCFs are
equivalent. To check whether a mapping constraint for-
mula φ is consistent we verify whether it is not true
that φ implies a mapping table with no mappings. To
check whether a set of mapping constraint formulas Σ
implies φ we verify whether ¬φ ∧ �

ϕ∈Σ ϕ is not consis-
tent. Thus, to analyze the complexity of these problems,
we can focus in the consistency problem.

5.2 Complexity of Consistency Problem
The following result shows that the consistency prob-

lem for mapping constraint formulas cannot be solved
efficiently.

Theorem 11. The consistency problem for mapping
constraint formulas is NP-complete.

The size of the input of this problem is the size of
the formula to be checked for consistency. This size
depends on the number of mapping constraints in the
formula and the number of attributes and mappings in
each mapping constraint. Thus, the consistency prob-
lem is NP-complete in the size of these three parameters.

A natural question at this point is what kind of re-
strictions can be imposed on the consistency problem to
reduce its complexity. A natural restriction is to con-
sider only conjunctions of mapping constraints. Given
a set of mapping constraints Σ = {µ1, . . . , µn}, we say
that Σ is consistent if µ1 ∧ · · · ∧ µn is consistent. The
following theorem shows that the complexity does not
change for conjunctions of mapping constraints.

Theorem 12. The consistency problem for conjunc-
tions of mapping constraints is NP-complete.

To deal with this high complexity we provide a solu-
tion that is based on the notion of path. A path θ is a list
P1, P2, . . . , Pn of peers such that peer Pi stores mapping
tables between its data items and the data items of peer
Pi+1, where i ranges from 1 to n− 1. The idea behind
our proposal is to check the consistency for conjunctions
of mapping constraints associated to paths. The details
of this algorithm are presented in the next section. In
the remainder of this section, we describe what are the
parameters that determine the complexity of the consis-
tency problem over paths, and we present results that
show how these parameters influence its complexity. We
use these results to understand under what assumptions
the problem can be solved efficiently.

A set of mapping constraints Σ over a set of attributes
U forms a path if there exists a collection U1, . . . , Un of
nonempty pairwise disjoint subsets of U such that for

every X
m
−→ Y ∈ Σ, there exists i ∈ [1, n − 1] such that

X ⊆ Ui and Y ⊆ Ui+1. The complexity of the consis-
tency problem for conjunctions of mapping constraints
forming paths depends on the number of mapping con-
straints in each peer, the number of mappings in each
mapping constraint, the length of the paths and the ar-
ity of the mapping constraints. Mapping constraints can
contain thousands of mappings and, therefore, it does
not seem reasonable to impose restrictions on this num-
ber. Thus, we investigate only the assumptions that
we have to impose on the other parameters in order to
obtain an efficient algorithm to solve the consistency
problem.

The following theorem shows two conditions that must
be taken into account in order to construct an efficient
algorithm for the consistency problem. First, if the
number of mapping constraints per peer is not fixed,
then the consistency problem cannot be solved efficiently.
Second, if the length of the path and the arity of the
mapping constraints are not fixed, then the consistency
problem cannot be solved efficiently.

Theorem 13. For each of the following conditions
the consistency problem for conjunctions of mapping con-
straints forming paths is NP-complete.

• The length of the paths and the arity of the mapping
constraints are fixed.

• The number of mapping constraints per peer is fixed.

Given the above, we make two assumptions to solve the
consistency problem. First, we assume that the number
of mapping constraints per peer is small. Second, we
assume that the length of the paths is also small. Paths
of fixed length arise often in practice. For example, it is
known that in Gnutella the paths of interest have a max-
imum size of 7. Under these assumptions, in the next
section we present an efficient algorithm for checking
consistency and doing inference of mapping constraints
forming paths.

6. THE ALGORITHM
Consider a path θ = P1, P2, ..., Pn of peers, and let Ui

be the set of attributes in peer Pi, 1 ≤ i ≤ n. Let Σ
denote the set of mapping constraints over path θ. Two
more notions are necessary for our purposes. The first
notion is that of an extension of a mapping constraint.
Specifically, given a mapping constraint µ : X

m
−→ Y ,

we define the extension of µ, denoted as ext(µ), to be:

ext(µ) = {ρ(t) | t ∈ m and ρ is a valuation over m}.

Furthermore, we say that µ is a cover of a set of mapping
constraints Σ over U if

1. Σ is consistent if and only if there exists t ∈ ext(µ)

2. For every mapping constraint µ′ : X
m′

−−→ Y , Σ |=
µ′ if and only if ext (µ) ⊆ ext(µ′).

The algorithm presented in the following paragraphs
accepts as input a path θ, a set Σ of mapping constraints
over path θ, and two sets of attributes X ⊆ U1, Y ⊆ Un

in peers P1 and Pn, respectively. Then, it computes a
mapping constraint µ : X

m
−→ Y that is a cover of the set

Σ of constraints. As such, the algorithm can be used to
solve both the inference and the consistency problems.

For the inference problem, given Σ and a mapping

constraint µ′ : X
m′

−−→ Y we want to check whether
Σ |= µ′. To solve this problem, it is sufficient to run the
proposed algorithm and check whether ext(µ) ⊆ ext (µ′).
The check, due to Condition 2 above, provides an an-
swer to the inference problem.

For the consistency problem, we run our algorithm
as before with the exception of sets X and Y which,
in this case, are all the attributes in peers P1 and Pn

respectively, i.e., X = U1 and Y = Un. At the end of
the algorithm, we can check whether Condition 1 above
is satisfied. If this is the case, set Σ is consistent.

6.1 Design Decisions
Most algorithms for checking consistency or doing in-

ferencing of constraints are centralized in that they as-
sume that all constraints are locally available. However,
in a peer-to-peer environment each peer stores locally
only the constraints that involve itself and its immedi-
ate acquaintances. Still, for small networks with a small
number of mappings per constraint it may be reasonable
to send all the constraints to a single peer and perform
all the necessary computation there. In a more realistic
scenario, though, there will be tens or even hundreds of
peers. Although we do not expect each peer to have a
large number of mapping constraints, we do expect that
each constraint may have a large number of mappings.
In some situations, the size of constraints may be pro-
portional to the size of stored relations. In the GDB
peer, for example, there are approximately 6.5 million
objects stored in the peer while there are 3.5 million
links to external sources. This latter number is the
cumulative number of mappings in the mapping con-
straints of the GDB peer. Given the above, we propose
an algorithm that takes advantage of the distributed na-
ture of the peer-to-peer architecture and distributes its
computation among the peers in a given path.

The algorithm runs on top of a prototype peer-to-peer
data management system in which each peer manages
a collection of data. Each peer autonomously chooses
a logical design and physical organization for the data.
Peers communicate using our own implementation of a
Gnutella-like protocol, customized to our specific needs.
The main algorithm was developed with two main goals
in mind. First, it must distribute the computation and,
thus, take advantage of the computational resources of
each peer. Second, it should deliver results in a stream-
ing fashion. Streaming has proven valuable in many de-
ployed peer-to-peer systems where results are delivered
as soon as they become available.

To present our algorithm, we use a simple running
example that involves a path θ = P1, P2, P3, P4 of four
peers. The mapping constraints Σ in this path are
shown in Figure 6. Peer P1 has attributes Ai (i ∈ [1, 6]),
P2 has attributes Bi (i ∈ [1, 6]), P3 has attributes Ci

(i ∈ [1, 4]) and P4 has attributes Di (i ∈ [3, 4]). Our
aim is to compute the cover µ between the attributes of

Peer P1

µ1 : A1
m1−−→ B1

µ2 : A1, A2
m2−−→ B1, B2

µ3 : A3
m3−−→ B2, B3

µ4 : A4
m4−−→ B4

µ5 : A5
m5−−→ B5

µ6 : A6
m6−−→ B6

Peer P2

µ7 : B1, B4
m7−−→ C1

µ8 : B3
m8−−→ C2

µ9 : B5
m9−−→ C3

Peer P3

µ10 : C3
m10−−−→ D3

µ11 : C4
m11−−−→ D4

Figure 6: A path θ = P1, P2, P3, P4 of 4 peers.

peer P1 and those of peer P4.
Consider the following algorithm for computing the

cover. First, peer P1 sends to P2 all the mapping con-
straints between these two peers. Peer P2 uses these
constraints, along with its own constraints, to create a
cover between peers P1 and P3. Then, peer P2 forwards
the cover to peer P3. Peer P3 repeats the process and
creates a cover between peers P1 and P4. Peer P3 sends
the computed cover back to peer P1 and the computa-
tion concludes.

The above algorithm, although it does distribute com-
putation, suffers from two shortcomings. First, it per-
forms unnecessary computation. Notice in Figure 6 that
peer P1 need not send to peer P2 the actual mappings
corresponding to constraint µ6. The reason for this
is that the part of the computation of the cover that
involves attribute A6 can be done locally in peer P1.
Furthermore, this computation can be done indepen-
dently of the computation that involves the remaining
constraints. The second shortcoming of the algorithm is
that it does not work in a streaming fashion since peer
P1 has to wait for the whole computation to finish in
order to retrieve the cover between itself and peer P4.
In the following paragraphs, we present an algorithm
which addresses these issues.

6.2 Partitions
A key concept in our algorithm is that of partitions.

Consider peers P and P ′ and let ΣP,P ′ be the set of con-
straints between these two peers. A partition Π is a sub-
set of ΣP,P ′ and it is constructed as follows. Consider a
graph GP,P ′ = (V, E), where V contains one vertex for
each constraint in ΣP,P ′ and there is an edge between
two constraints if their attributes overlap. Partition Π
contains all the constraints of ΣP,P ′ whose correspond-
ing vertices belong to the same connected component of
GP,P ′ . Applying the above procedure in the constraints
between peer P1 and peer P2, shown in Figure 6, we
get four partitions. The first partition Π1 consists of
the first three constraints, while each of the remaining
three constraints constitutes a partition by itself. Fig-
ure 7 shows the partitions for the first three peers.

The benefit gained from partitioning the constraints
in each peer is two-fold. First, while computing the
cover, we are able to consider the constraints of each
partition in isolation. This reduces the computational
cost, with the exception where there is only one par-
tition in ΣP,P ′ , since we consider fewer constraints at

Peer P1 Peer P2

A1
m1−−→ B1

Π1 A1, A2
m2−−→ B1, B2

A3
m3−−→ B2, B3

Π2 A4
m4−−→ B4

Π3 A5
m5−−→ B5

Π4 A6
m6−−→ B6

Π5 B1, B4
m7−−→ C1

Π6 B3
m8−−→ C2

Π7 B5
m9−−→ C3

Peer P3

Π8 C3
m10−−−→ D3

Π9 C4
m11−−−→ D4

Figure 7: Peer P1, P2 and P3 partitions.

a time. Second, we can work on different partitions in
parallel. This reduces the computation time and it also
facilitates the delivery of results in a streaming fashion.

6.3 Description of the Algorithm
The algorithm has two phases, namely, the informa-

tion gathering phase and the computation phase. The
objective of the former phase is to collect enough infor-
mation from the peers so as to reduce the computation
in the latter phase. At the same time, the information
gathered is used to reduce network traffic and to help
determine how much of the computation can be exe-
cuted in parallel. In what follows, we examine each of
the two phases in more detail. To explain the algorithm,
we use the example of Figure 6.

6.3.1 The Information Gathering Phase
The phase begins in peer P1 with the computation

of partitions. Then, peer P1 sends to peer P2, for each
of his partitions, the set of attributes in the partition.
No mappings are sent at this phase. Peer P2 computes
its own partitions and, using the information for the
partitions of peer P1, it computes a new set of inferred
partitions. The inferred partitions possibly involve con-
straints of both peers and they are computed as follows.
We construct a partition graph GΠ = (VΠ, EΠ), where
VΠ contains one vertex for each partition in the union of
partitions of P1 and P2. There is an edge between two
partitions if their attributes overlap. Each connected
component of graph GΠ is an inferred partition. Figure
8 shows the inferred partitions for the first two peers.

We use inferred partitions to discover interdependen-
cies, or lack thereof, between partitions. Then, in the
computation phase, we perform parallel computation
and streaming of results along different inferred parti-
tions. As an example, if the information gathering phase
terminates here, then computation of the cover between
peers P1 and P3 can be performed independently and
in parallel along the three inferred partitions.

The information gathering phase continues with peer
P2 sending to peer P3 the sets of attributes correspond-
ing to its inferred partitions. Peer P2 sends only the
inferred partitions involving some its own constraints,

Peer P1 Peer P2

A1
m1−−→ B1

A1, A2
m2−−→ B1, B2

A3
m3−−→ B2, B3

A4
m4−−→ B4

B1, B4
m7−−→ C1

B3
m8−−→ C2

A5
m5−−→ B5 B5

m9−−→ C3

A6
m6−−→ B6

Figure 8: Inferred partitions over P1 and P2.

i.e., only the top two in Figure 8. Peer P3 computes
its own partitions, and using the information regarding
the propagated inferred partitions from peer P2, it com-
putes a new set of inferred partitions. This concludes
the information gathering phase.

6.3.2 The Computation Phase
For each of the inferred partitions in the previous

phase, the set of constraints in the partition belongs
to a set of peers that form a sub-path θ′ of path θ. Let
Σθ′ denote the set of constraints in an inferred partition
over path θ′. During this phase, we consider each in-
ferred partition and we compute its cover. Specifically,
given the path θ′ and the set Σθ′ of constraints, we com-
pute a cover of Σθ′ over the attributes of the peers that
are the endpoints of θ′.

In more detail, assume an inferred partition over the
whole path, i.e., θ′ = θ. The computation of the cover
starts, in general, at the last peer of the path. In the
special case where θ′ = θ, the computation starts at the
penultimate peer. Thus, in our example we start at peer
P3. Peer P3, using the local constraints of the current
inferred partition, executes a local algorithm that com-
putes a cover between peers P3 and P4. The cover only
involves the attributes of the two peers that appear in
the inferred partition. The mappings belonging to the
cover are streamed to peer P2. Using the information
from the inferred partitions, P2 determines with which
of its own partitions the incoming stream of mappings
should be associated. Then, it uses this information to
generate a cover between itself and peer P4. The map-
pings from this cover are, in turn, streamed to peer P1.
In the final step, peer P1 uses the incoming stream of
mappings to generate a cover between its own attributes
and those of peer P4.

Notice that there can be more than one inferred par-
titions over the whole path θ. Each such partition pro-
duces a cover over non-overlapping subsets of attributes
of peers P1 and P4. To compute the cover µ between all
the attributes of the two peers, we first take the Carte-
sian product µ′ of the computed covers. To finish the
computation of µ we need to take into account the in-
ferred partitions that involve attributes of peer P1, but
are not over the whole path θ (e.g. the partition in
Figure 8 involving attribute A6). Specifically, in the fi-

GDB
m1−−→ MIM Locus

m7−−→ GDB

GDB
m2−−→ SwissProt Locus

m8−−→ Unigene

Hugo
m3−−→ GDB Locus

m9−−→ MIM

Hugo
m4−−→ Locus Unigene

m10−−−→ SwissProt

Hugo
m5−−→ SwissProt SwissProt

m11−−−→ MIM

Hugo
m6−−→ MIM

Figure 9: Biological mapping tables

nal step of the computation of µ we take the Cartesian
product of µ′ with the values of attribute A6.

7. EXPERIMENTAL RESULTS
To evaluate our algorithm, we undertook two studies.

The first was designed to understand whether (and to
what extent) our solutions provide added value for com-
munities that already use and exchange mapping tables
extensively. For this study, we used real mapping ta-
bles from several publicly available biological databases.
The second study was designed to evaluate whether the
characteristics of our algorithm are appropriate and ef-
fective in a peer-to-peer environment. We are not aware
of any other work designed to manage mapping tables,
so we were unable to do a comparison study. However,
we do present some of the performance characteristics
of our algorithms on both the biological data and on a
B2B example.

Our implementation uses geographically distributed
machines with one peer per machine. Each peer con-
sists of two modules. The first module interacts with the
peers storage manager to retrieve mappings (from disk)
and performs the computation of the cover. Also, the
module is responsible for the creation of inferred parti-
tions and the validation of incoming mapping streams.
The second module implements the peer-to-peer net-
working protocol. In terms of memory requirements,
we allow each peer to decide how much cache to use.
Peers that use a small cache are able to store only a
limited number of mappings during the computation of
covers. Such peers generally produce more network traf-
fic since their available cache may fill up quickly and
thus they have to stream mappings more often. On the
other hand, peers with a larger cache generate less traf-
fic and do more computation between two consecutive
network transmissions.

Biology Domain For this study we used actual map-
ping tables retrieved from six biological databases, GDB,
MIM, and SwissProt (which have been discussed in our
examples), along with Hugo, Locus, and Unigene [3, 5,
9]. The table sizes range from seven thousand to twenty-
eight thousand mappings with an average of thirteen
thousand mappings. These mapping tables are rela-
tively simple tables (they are all binary and comprise
a single partition). However, this setting is a very com-
mon one where mapping tables represent links between
identifiers used in different data sources.

Throughout the paper, we have stressed the impor-
tance of inferring new mappings especially when two

Computed New Time
Path Length Mappings Mappings (in secs)

1 5 6163 927 16.00
2 4 6193 11 15.00
3 3 9334 543 22.00
4 3 8704 10 22.00
5 3 6525 64 10.00
6 5 3276 397 26.00
7 4 8813 24 23.00

Figure 10: Inferred mappings

peers first become acquainted. This experiment shows
the benefit of inferring mappings even between peers
that are already acquainted. Figure 9 lists the mapping
tables that we found between the 6 biological databases.
Consider two such peers, the Hugo database and the
MIM database. There exists a mapping table with eight
thousand mappings between the identifiers of these two
databases. We assumed two sources to be acquainted
if one contained a mapping table with attributes from
the other. Under this assumption, our peer-to-peer net-
work contained seven different paths, of different sizes,
between Hugo and MIM. For example, one such path is
θ = Hugo, GDB, SwissProt, MIM. In our experiments,
we visited these paths in turn, in the order shown in
the first column of Figure 10, and computed the cover
between the endpoint peers for each of these paths. In
the same figure, we show both the number of mappings
we computed between Hugo and MIM in each path, and
the number of new mappings that we computed which
are not in the initial Hugo to MIM mapping table (and
are not computed by the previously visited paths). No-
tice that the length of the path is not correlated with
the number of computed mappings. Rather, the num-
ber of computed mappings is more a reflection of the
knowledge embedded in the different tables used. Over-
all, after visiting all seven paths we compute approxi-
mately two thousand new mappings which is a 25% in-
crease with respect to our initial set of mappings. The
whole computation along each path takes on average 19
seconds. Since we stream results along each path, the
reported computation time here, and in the following
paragraphs, is the time it takes to receive the last com-
puted mapping. The first mapping always arrives with
no perceptible delay.

To understand how well our algorithm performs, we
consider the scalability of the algorithm for different
path sizes and different mapping table sizes. To under-
stand the effect of path size in isolation, we use three
paths of different lengths that all produced about the
same number of computed mappings. Figure 11 shows
that the running time of the algorithm scales gracefully
for each of the path lengths, as we change the aver-
age number of mappings in each of the mapping tables
along the path. In all the above experiments, we keep
constant the size of the cache in each peer. Specifically,
we allow each peer to store, on average, 64 mappings.
Our experiments with different cache sizes indicate that

0

2

4

6

8

10

12

14

16

18

2000 4000 6000 8000 10000

Se
co

nd
s

Average number of mappings per mapping table

Length 3
Length 4
Length 5

Figure 11: Scalability in path and table size

for small paths, increasing the cache size has no sig-
nificant effect on the running time. For larger paths,
increasing the cache has initially a noticeable positive
effect on the running time. However, as the cache size
continues to increase, the running time starts to increase
also and there is a noticeable delay in the arrival of the
first streamed mapping(s). The reason for this is that,
as we increase the cache size, we allow each peer to do
more computation, on bigger data sizes, but this results
in less streaming. This, in turn, creates a delay in the
arrival of the first streamed mappings. In the extreme
case where the cache size is big enough to fit all the
mappings that a peer can process during a computa-
tion, no streaming occurs and each peer forwards its
mappings to the next peer only after it finishes its part
of the computation. In the meantime, all other peers
are idle. Clearly, this approach is not efficient. In con-
clusion, our experiments show that cache sizes from 64
to 128 mappings result the best running times for these
data characteristics.

B2B Domain The second domain is a business-to-
business (B2B) setting. We used this study to evalu-
ate the effectiveness of our algorithms on more compli-
cated (non-binary) mappings involving combinations of
attributes. We considered a setting in which multiple
businesses, or organizations within a business, are ex-
changing client data. Each organization may store data
in different formats and the data itself may be dirty or
inconsistent (within and across peers). Data cleansing,
particularly duplicate elimination [25], can be used to
detect data values that correspond. The results of these
techniques can be represented as mapping tables be-
tween sets of domains. Additionally, we may have map-
ping tables representing a fixed set of known relation-
ships (perhaps Age → AgeGroup) across mismatched
domains [16]. We consider a simple scenario with three
organizations whose mapping constraints are shown in
Figure 13. Note that peer P1 has two partitions while
peer P2 has three. Also, several of the mapping tables
involve variables including the first constraint m1 which
includes the mapping (v1, v2) → (v1, v2) indicating the
identity mapping, together with mappings containing
common misspellings and nicknames.

For our experiments, we used synthetically generated
mappings of constants along with some manually cre-

20

40

60

80

100

120

140

160

5000 10000 15000 20000 25000 30000

Se
co

nd
s

Maximum number of mappings per mapping table

Partition 1
Partition 2

20

40

60

80

100

120

140

160

5000 10000 15000 20000 25000 30000

Se
co

nd
s

Maximum number of mappings per mapping table

Partition 1
Partition 2

Figure 12: Per partition execution time

Peer P1 Peer P2

FName,LName
m1−−→ FN,LN FN

m5−−→ Gender

AreaCode, Street
m2−−→ Zip Zip,City

m6−−→ State

Street
m3−−→ Zip Age

m7−−→ AgeGroup

AreaCode
m4−−→ City

Figure 13: Mapping tables for a B2B domain.

ated variable mappings. Figure 12 shows the running
times of the algorithm along each of the two partitions
of this example as the number of mappings is increased.
This experiment shows that despite the presence of vari-
ables and the use of a richer semantics for tables, we
are still able to compute new mappings efficiently. As
with our biological example, the streaming provided by
our algorithm delivers the first mappings almost instan-
taneously and the total execution time scales approx-
imately linearly with the number of computed map-
pings.

8. RELATED WORK
There has been a great deal of recent work on data

management in peer-to-peer systems on issues ranging
from data placement [17], schema mediation [18], reli-
able data archiving [14], to data modeling [11]. Bern-
stein et al. [11] introduce the Local Relational Model
(LRM) as a data model which is specifically designed for
peer-to-peer applications. The objective of the model is
to support semantic interoperability between relational
databases in the absence of a global schema. The pro-
posed model makes use of domain relations which are
equivalent to the notion of mapping tables. However,
unlike our approach, no provision is taken to manage
domain relations.

Lenzerini [20] describes a general framework for mod-
eling data integration applications. In particular, this
framework can be used to represent peer-to-peer appli-
cations. The main difference between this approach and
ours is that the former focuses on expressing constraints
on the information contained in the peers (primarily us-
ing views) [22, 23], while we impose constraints only on
the exchange of information between peers. As such,

our approach respects peer autonomy since it does not
restrict the operation of peers in anyway beyond the
agreement on values expressed in the tables.

Our experience with mapping tables shows that these
can be used in support of value searches. The perfor-
mance of value searches has received a great deal of
attention [27, 24, 26]. Recently, researchers have pro-
posed architectures for more advanced query processing
in peer-to-peer systems (most notably Harren et al [19]
and Gribble et al [17]). The proposal of Harren et al
is similar in spirit to our own in that it is data model
independent, relying only on peers to expose identifiers
and optionally a set of descriptive attributes [19].

9. CONCLUSIONS
In this paper, we have considered the problem of man-

aging collections of mapping tables. While such tables
are used extensively in data-sharing systems, we are not
aware of any other work that considers how these col-
lections can be maintained and managed. Our results
provide a first step in this direction.

In detail, we have discussed alternative semantics for
mapping tables and we presented a language that al-
lows the specification of mapping tables under different
semantics. We have showed that by treating mapping
tables as constraints on the exchange of information be-
tween peers we are able to reason about them and check
their consistency. Given the high complexity of both the
inference and the consistency problems, we have pro-
posed an algorithm that, under realistic assumptions,
solves the above problems efficiently. Our algorithm is
fully implemented and in this work we have also pre-
sented experimental results which show its effectiveness.

In future work, we plan to study the behavior of a
peer-to-peer system in which each peer continuously dis-
covers alternative paths between itself and its acquain-
tances and it uses our algorithm to update its mapping
tables. Furthermore, we intend to investigate the use of
mapping tables in support of query answering.

10. REFERENCES
[1] GDB. http://www.gdb.org/.

[2] Gnutella. http://www.gnutelliums.com/.

[3] Hugo. http://www.gene.ucl.ac.uk/hugo/.

[4] Hyperion.
http://www.cs.toronto.edu/db/hyperion/.

[5] Locus. http://www.ncbi.nlm.nih.gov/LocusLink/.

[6] MIM. http://www.ncbi.nlm.nih.gov/omim/.

[7] Napster. http://www.napster.com/.

[8] SWISS-PROT. http://www.ebi.ac.uk/swissprot/.

[9] Unigene. http://www.ncbi.nlm.nih.gov/UniGene/.

[10] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison-Wesley, 1995.

[11] P. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data
Management for Peer-to-Peer Computing: A
Vision. In WebDB, 2002.

[12] M. L. Brodie and M. Stonebraker. Migrating
Legacy Systems: Gateways, Interfaces, and the
Incremental Approach. Morgan Kaufmann, 1995.

[13] C.-C. K. Chang and H. Garcia-Molina. Mind Your
Vocabulary: Query Mapping Across
Heterogeneous Information Sources. In SIGMOD,
pages 335–346, 1999.

[14] B. Cooper and H. Garcia-Molina. Peer-to-peer
data trading to preserve information. TOIS,
20(2):133–170, 2002.

[15] S. Davidson, G. C. Overton, and P. Buneman.
Challenges in Integrating Biological Data Sources.
Journal of Computational Biology, 2(4):557–572,
1995.

[16] L. G. DeMichiel. Resolving Database
Incompatibility: An Approach to Performing
Relational Operations over Mismatched Domains.
KDE, 1(4):485–493, 1989.

[17] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and
D. Suciu. What Can Databases Do for
Peer-to-Peer? In WebDB, 2001.

[18] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov.
Schema Mediation in Peer Data Management
Systems. To appear in ICDE 2003.

[19] M. Harren, J. M. Hellerstein, R. Huebsch, B. T.
Loo, S. Shenker, and I. Stoica. Complex Queries
in DHT-Based Peer-to-Peer Networks. In IPTPS,
volume 2429 of LNCS, pages 242–250, 2002.

[20] M. Lenzerini. Data Integration: A Theoretical
Perspective. In PODS, pages 233–246, 2002.

[21] B. Ludäscher, A. Gupta, and M. E. Martone.
Model-Based Mediation with Domain Maps. In
ICDE, pages 81–90, 2001.

[22] J. Madhavan, P. A. Bernstein, P. Domingos, and
A. Y. Halevy. Representing and Reasoning about
Mappings between Domain Models. In AAAI,
pages 80–86, 2002.

[23] L. Popa, Y. Velegrakis, R. J. Miller, M. A.
Hernandez, and R. Fagin. Translating Web Data.
In VLDB, pages 598–609, Aug. 2002.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A Scalable Content Addressable
Network. In SIGCOMM Conference, pages
161–172, 2001.

[25] S. Sarawagi, editor. IEEE Data Engineering
Bulletin: Special Issue on Data Cleaning,
volume 23, Dec. 2000.

[26] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications. In
SIGCOMM, pages 149–160, 2001.

[27] B. Yang and H. Garcia-Molina. Comparing
Hybrid Peer-to-Peer Systems. In VLDB, pages
561–570, 2001.

	page1: 325
	page2: 326
	page3: 327
	page4: 328
	page5: 329
	page6: 330
	page7: 331
	page8: 332
	page9: 333
	page10: 334
	page11: 335
	page12: 336

