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ABSTRACT
Schema matching is a critical problem for integrating hetero-
geneous information sources. Traditionally, the problem of
matching multiple schemas has essentially relied on finding
pairwise-attribute correspondence. This paper proposes a
different approach, motivated by integrating large numbers
of data sources on the Internet. On this “deep Web,” we
observe two distinguishing characteristics that offer a new
view for considering schema matching: First, as the Web
scales, there are ample sources that provide structured infor-
mation in the same domains (e.g., books and automobiles).
Second, while sources proliferate, their aggregate schema
vocabulary tends to converge at a relatively small size. Mo-
tivated by these observations, we propose a new paradigm,
statistical schema matching : Unlike traditional approaches
using pairwise-attribute correspondence, we take a holistic
approach to match all input schemas by finding an underly-
ing generative schema model. We propose a general statisti-
cal framework MGS for such hidden model discovery, which
consists of hypothesis modeling, generation, and selection.
Further, we specialize the general framework to develop Al-
gorithm MGSsd, targeting at synonym discovery, a canonical
problem of schema matching, by designing and discovering
a model that specifically captures synonym attributes. We
demonstrate our approach over hundreds of real Web sources
in four domains and the results show good accuracy.

1. INTRODUCTION
Schema matching is fundamental for enabling query me-

diation and data exchange across information sources. This
paper attempts to consider the schema matching problem
with a new paradigm: Traditionally, such matching has been
approached mainly by finding pairwise-attribute correspon-
dence, to construct an integrated schema for two or some
(small number of) n sources. We observe that there are
often challenges (and certainly also opportunities) to deal
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with large numbers of sources. As a different approach, we
take a holistic view of all the attributes in input sources and
attempt to find an underlying unified model which captures
their matchings.

Such scenarios arise, in particular, for integrating databases
across the Internet. On this “deep Web,” numerous data
sources provide structured information (e.g., amazon.com
for books; cars.com for automobiles) accessible only via dy-
namic queries instead of static URL links. Each source ac-
cepts queries over its schema attributes (e.g., author and title
for amazon.com) through its query interface. Thus, schema
matching across query interfaces is clearly essential for medi-
ating related sources of the same domains, which this paper
specifically focuses on.

On the deep Web, we observe two distinguishing charac-
teristics that offer a new view for schema matching: On
one hand, we observe proliferating sources: As the Web
scales, many data sources provide structured information
in the same domains (e.g., there are numerous other “book”
sources, such as bn.com). On the other hand, we also ob-
serve converging vocabularies: The aggregate schema vocab-
ulary of these sources tends to converge at a relatively small
size (e.g., these books sources share 12 frequent attributes,
which account for 78% of all attribute occurrences).

These observations lead us to hypothesize that, underly-
ing sources of the same domain, there exists a hidden schema
model, which is a unified generative model that describes
how schemas are generated from a finite vocabulary of at-
tributes, with some probabilistic behavior. Under this hy-
pothesis, it is natural that we have observed proliferating
sources with converging vocabularies.

Motivated by this hypothesis, we explore a new paradigm,
which we call statistical schema matching. Unlike traditional
approaches using pairwise-attribute correspondence, given
a set of input sources as observed schemas, we will find
hidden models that are consistent, in a statistical sense,
with the schemas observed. Using a scenario of matching
several book sources, Figure 1 contrasts the two different
approaches. Given a set of schemas as input, the tradi-
tional schema-matching approaches essentially rely on find-
ing pairwise-attribute correspondence (e.g., author in Source
S1 maps to name in S3) for eventually constructing a uni-
fied schema for all sources. In contrast, our approach hy-
pothesizes and attempts to find, in the first place, a unified
model, which gives the “structure” of the attributes across
all sources (e.g., author, name, and writer are the same con-
cept, and so are subject and category).

To realize statistical schema matching, we propose a gen-
eral abstract framework, MGS, with three steps: (1) Hypoth-
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Figure 1: Two different matching approaches.

esis modeling : We first specify a parameterized structure of
the hypothetical hidden models. Such models should cap-
ture the target questions of schema matching that we want
to address– e.g., the model in Figure 1 targets at synonym
discovery. (2) Hypothesis generation: We then generate all
“consistent” models that instantiate the observed schemas
with non-zero probabilities. (3) Hypothesis selection: Fi-
nally, we select models of sufficient statistical consistency
with the observed schemas. Such an underlying model is
likely the one that unifies the input schemas, and answers
our target questions. We stress that the discovery of the
underlying model can directly address the target questions
(e.g., attribute correspondence). Also, the model is itself
useful as a mediated schema (e.g., as a query front-end).

Further, we specialize the MGS framework for synonym
discovery– a canonical problem in schema matching– across
query interfaces of deep Web sources. We view each query
interface as a set of attributes (for querying), or a schema,
and our goal is to find the synonym attributes. In this Algo-
rithm MGSsd, we design a simple model to capture the tar-
get question of synonym attributes (i.e., multiple attributes
are of the same “concept”). Given a set of schemas, MGSsd

generates hypothetical models, under which it is “possible”
(with non-zero probabilities) to “observe” these schemas.
Finally, MGSsd adopts χ2 hypothesis testing to select candi-
date models that are consistent with the observed schemas
at a sufficient significance level.

We performed case studies for over 200 real sources in 4
domains: books (e.g., amazon.com), movies (e.g., blockbuster-
.com), music records (e.g., towerrecords.com), and automo-
biles (e.g., cars.com). Our goals are two-fold: (1) Verify
the phenomenons (of proliferating sources and converging
vocabularies) that support our motivating hypotheses (Sec-
tion 3). (2) Validate the performance of MGSsdwith two
suites of metrics: model accuracy and target accuracy. In
either case, we observed good performance (Section 6).

In our development, we also observed several interesting
issues. Can we deal with more expressive models? How
can our framework benefit from existing techniques (as [16]
surveys)? Does a hidden model always exist for a collection
of schemas? We discuss these open issues in Section 7.

In summary, our approach takes a new view to cope with
schema matching: (1) We study and report two distinguish-
ing characteristics of databases on the deep Web, an impor-
tant frontier for information integration. (2) We present
a new paradigm, hidden model discovery, for large-scale
schema matching, realized by a general statistical frame-
work MGS. (3) We develop Algorithm MGSsd specifically
for synonym discovery across Web query interfaces.

We discuss related work in Section 2. Section 3 explores

our observations of sources on the deep Web. Section 4
presents the general MGS framework for statistical schema
matching, which Section 5 specializes to MGSsd for synonym
discovery for Web interfaces. Section 6 reports our case
studies and evaluation. Section 7 discusses some open issues.

2. RELATED WORK
Schema matching (which this paper focuses on) is one

critical step for schema integration [1, 17]. We relate our
work to existing works in four aspects: the paradigms, the
techniques, the input data, and the focuses.

First, paradigms: Traditionally, schema matching relies
on matchings between pairwise attributes before integrat-
ing multiple schemas. For instance, traditional binary or
n-ary [14] schema integration methodologies (as [1] surveys)
exploit pairwise-attribute correspondence assertions (mostly
manually given) for merging two or some n sources. The
more recent development of general model management es-
sentially abstracts schema matching as pairwise similarity
mappings between two input sources [16]. In contrast, we
propose a new paradigm, statistical schema matching, to
holistically match many sources at the same time by discov-
ering their underlying hidden model. Our work was moti-
vated by integrating the deep Web, where the challenge of
large scale matching is pressing. Our framework leverages
such scale to enable statistical matching.

The closest idea is probably the recent REVERE pro-
posal [9], which suggests to use a separately-built schema
corpus as a “knowledge-base” for assisting matching of un-
seen sources. While sharing the same insights of statistics
analysis over corpora, our approach differs in that it lever-
ages input schemas themselves as the corpus and assumes a
generative model to unify the corpus.

Second, techniques: Based on our observation of the deep
Web sources (Section 3), we develop a statistical framework,
which contrasts with existing techniques such as machine
learning [8], constraint-based [11], and hybrid approaches [13].
The survey [16] presents a taxonomy of these approaches.

Third, input data: The previous works assume their input
as either relational or structured schemas. Those schemas
are designed internally for developers. As a consequence, the
attributes of the schemas may be named in a highly incon-
sistent manner, imposing many difficulties in schema match-
ing. In contrast, our work (Section 5) focuses on matching
query interfaces of deep Web sources. These interfaces are
designed for end users and are likely more meaningful and
consistent. Thus, we observed this distinguishing charac-
teristic of “converging vocabulary” in our deep Web studies
(Section 3), which motivated our statistical approach.

Fourth, focuses: The previous works focus on different as-
pects of schema matching. To begin with, for name match-
ing, some focus on simple 1:1 correspondence, while others
complex m:n. Further, some works also consider structure
matching. This paper targets at synonym discovery to sup-
port simple attribute correspondence, which seems sufficient
for integrating Web interfaces. However, we believe our gen-
eral framework can deal with a wider class of schema match-
ing problems (Section 4).

The concept of generative models, as we intend to hy-
pothesize and discover, has been applied in many different
contexts. In particular, information retrieval [15] as well as
model-based clustering [7] both assume an underlying gen-
erative model for a collection of objects. Similar to us, their



domain sources all attributes non-rare
books 55 47 12
movies 52 44 12
music records 49 35 11
automobiles 55 37 11

Figure 2: Statistics of sources studied.

tasks also involve estimating the parameters to construct the
right model. However, our search space is significantly larger
because we need to select a unified model among multiple
model candidates.

3. MOTIVATION: THE DEEP WEB
In the last couple of years, the Web has been rapidly

“deepened” with the prevalence of databases online: A sig-
nificant amount of information is now hidden on the “deep”
Web, behind the query forms of searchable databases. Such
information cannot be accessed directly through static URL
links; they are only available as responses to dynamic queries
submitted through the query interface of a database.

With massive sources, the deep Web is clearly an impor-
tant frontier for data integration. For any such attempts
(e.g., mediating a specific domain, say, automobiles), it is
essential to integrate these query interfaces, since data must
be retrieved with queries. This paper focuses on matching
the schema aspect of query interfaces by discovering syn-
onym attributes across different sources.

This “wild” frontier of the deep Web is characterized by its
unprecedented scale. As a challenge: we often need to match
large numbers of sources. As an opportunity : ample sources
are usually available to form a useful “context” of match-
ing. Intuitively, by holistically unifying many sources in the
same domain, our statistical approach intends to leverage
the opportunity while addressing the challenge.

3.1 Deep Web Observations
To understand their characteristics, we performed infor-

mal study of sources on the deep Web. From Web directo-
ries, we drew sources in each of the four domains: books, mu-
sic records, movies, and automobiles. In particular, we col-
lected all of invisibleweb.com’s sources (in these 4 domains)
and most of yahoo.com’s without any bias, until reaching
about 50 sources in each domain, as Figure 2 summarizes.

On one hand, we observe proliferating sources: As the
Web scales, many data sources exist to provide structured
information in the same domains, as Figure 2 shows. While
many Web directories such as invisibleweb.com already list
impressive numbers of online sources by manual compila-
tion, there are certainly much more sources out there: By us-
ing overlap analysis, a July 2000 survey [2] estimated 96,000
“search cites” and 550 billion hidden pages in the deep Web.
Our survey [4] in December 2002 found 127,000 deep Web
sources by exploiting the random IP-sampling approach. As
the Web continues to expand, it will house virtually unlim-
ited numbers of sources in interesting domains.

On the other hand, we also observe converging vocabular-
ies: The aggregate schema vocabulary of sources in the same
domain tends to converge at relatively small size. Figure 2
summarizes (in the middle column) the sizes of the entire
vocabularies of all attributes used in any sources, which are
about 40 for each domain. Figure 3(a) further analyzes the
growth of vocabularies as sources increase in numbers. The
curves clearly indicate the convergence of vocabularies. For
instance, for book domain, 92% (43/47) attributes are ob-

served at 25th sources, and 98% (46/47) at 35th. Since the
vocabulary growth rates (i.e., the slopes of these curves) de-
crease rapidly, as sources proliferate, their vocabularies will
tend to stabilize. Note that the sources are sorted in the
same order as they were collected without any bias.

In fact, the vocabularies will converge more rapidly, if we
exclude “rare” attributes. To quantify, let the frequency
of an attribute be the number of sources in which it oc-
curs. Figure 3(b) orders these frequencies for the book do-
main over their ranks, with attributes detailed in Figure 8.
It is interesting but perhaps not surprising to observe that
the distribution obeys the Zipf’s law: The frequencies are
inversely proportional to their ranks. Many low-ranked at-
tributes thus rarely occur; Figure 3(b) shows only the top 12
attributes (which account for 78% or 230/294 of all the at-
tribute occurrences); most others occur only once. In prac-
tice, these rare attributes are likely unimportant in matching
since their rareness indicates that very few other sources will
find them useful. With such rare attributes (say, below 10%
frequencies) excluded, the “useful” vocabularies are much
smaller: about 11 attributes per domain (Figure 2).

Note that, while vocabularies tend to converge, schema
heterogeneity still persists. That is, although Web query
interfaces tend to share attributes, they are not universally
unified– thus creating the real challenge of schema match-
ing. In particular, among the top “popular” attributes for
books in Figure 3(b)– how many different attributes are
“synonyms” for the same concepts? We found 5 ({author,
last name, first name}, {subject, category}) out of 12, or a
significant 42%. We observed similar levels of heterogeneity
in other domains as well (see Figure 8).

3.2 Toward Hidden Model Discovery
These observations lead us to hypothesize the existence

of a hidden schema model that probabilistically generates,
from a finite vocabulary, the schemas we observed. Intu-
itively, such a model gives the “structure” of the vocabulary
to constrain how instances can be generated. We believe
this hypothesis reasonable, since it naturally explains our
observations in Section 3.1.

Example 1 (Hidden Model): Referring to Figure 1 (right),
the example model structures vocabulary {author, subject,
name, · · · } as M = {(author, writer, name), (subject, cate-
gory), · · · }. Under M, some schemas can be generated (and
thus observed), while others cannot. In particular, schema
I1 = {author, name, title, · · · } is unlikely, since it contains
redundant attributes (i.e., author and name) for the same
concept, but I2 = {title, author, subject, · · · } is possible.

The hypothesis sheds new light on a different way for cop-
ing with schema matching: If a hidden model does exist, its
discovery would reveal the vocabulary structure, which will
in principle answer “any” schema matching questions. (As
an analogy, an English dictionary can semantically relate
all English words, subsuming the need for their pairwise
correspondence.) As Figure 1 contrasts, such model-level
unification of all attributes in the same domain will sub-
sume their pairwise correspondence (as used in traditional
schema matching). We thus propose a new paradigm: sta-
tistical schema matching by hidden model discovery.

4. STATISTICAL SCHEMA MATCHING:
THE MGS FRAMEWORK
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Figure 3: Analyzing schema vocabularies of deep Web sources.

As just motivated, we view schema matching as a quest
for an underlying model generating the input schemas. That
is, our probabilistic approach seeks to treat the schemas as
being generated by a random process following a specific
distribution. Our goal is thus, given the input schemas as
“observations,” to reconstruct the hidden generative distri-
bution. To emphasize the statistic nature, we refer to this
general paradigm as statistical schema matching.

We believe the statistical approach has several advantages
over traditional schema matching: First, scalability : By
unifying large number of input schemas holistically rather
than matching attributes pairwise, it addresses the scale of
matching required in the new frontier of networked databases,
such as our motivating goal of the deep Web.

Second, solvability : In fact, the large scale can itself be
a crucial leverage to make schema matching more solvable–
in particular, it enables a principled and effective statistical
approach, by taking advantages of sufficient samples. In-
tuitively, we are building upon the “peer context” among
schemas. Our approach showed good accuracy with rela-
tively small number of sources (Section 6). Being statistics-
based, our approach will benefit from the scale: the accuracy
will “scale” with the number of sources.

Third, generality : We believe such hidden model discov-
ery can generally deal with many different aspects of schema
matching, and present an abstract framework that can be
specialized. Except synonym discovery (which we will fo-
cus on), there are certainly other important questions re-
lated to schema matching, such as: What concepts are pop-
ular? (Such popularity can guide the design of a “media-
tor view” over sources, by exporting commonly supported
concepts). How are attributes frequently associated? (An
interactive mediator query interface may, following author,
prompt users with title, or following make with model.)

To realize this statistical approach, we propose a gen-
eral framework, MGS, consisting of hypothesis modeling,
generation, and selection. We believe the MGS framework
is important in its own rights: In principle, by application-
specific hypothesis modeling, MGS can be applied to find
models addressing different “target questions.” We next
present the abstract MGS framework by explaining its three
essential steps below. Section 5 will develop MGSsd as a
concrete specialization for finding synonyms.

1.Hypotheses Modeling : To guide the seeking of a hypothet-
ical model, or a hypothesis, we start by defining the general
structure of such models. Such modeling should essentially
capture specific target questions. For instance, if finding
synonyms is the target, a model should explicitly express
the grouping of “synonyms.” Such modeling will also spec-
ify a generative behavior of how schemas can be generated.

Such behavior is mainly probabilistic (e.g., attributes will
be drawn randomly by their “popularity”), although it can
also partially be deterministic (e.g., no synonyms can be se-
lected together). Effectively, the model forms a statistical
distribution, which generates a particular schema with some
instantiation probability.

2.Hypotheses Generation: We then enumerate concrete hy-
potheses (in the specified abstract model) that are consis-
tent with the observed schemas (with non-zero probabili-
ties). Note that, even with a parameterized structure, there
will be a large space of candidate hypotheses to search, for
a vocabulary of reasonable size. This generation step helps
to focus the search to only those promising hypotheses that
are likely to generate the observed schemas.

3.Hypotheses Selection: Finally, we select hypotheses that
are consistent with the observed schemas with sufficient sta-
tistical significance. There are various statistical devices for
such hypothesis testing [3]. For instance, we use χ2 testing
in our MGSsd algorithm (Section 5).

In summary, we propose MGS as a general framework for
the hidden model discovery problem: Given a set of schemas
I as observations, hypothesize and select the schema models
with sufficient statistical consistency as the generative dis-
tributions of I. We next specialize the abstract framework
for synonym discovery.

5. SYNONYM ATTRIBUTES DISCOVERY
Finding corresponding attributes is a central problem for

schema matching; in this paper, we pursue this problem
as synonym discovery. The challenge is to find, typically
without semantics understanding, the synonyms among the
input attributes. That is, across different schemas, some at-
tributes (e.g., author and name, or subject and category) are
synonyms for the same concepts (e.g., for the “author” and
“subject” concepts respectively). As Section 3 motivated,
we focus on matching query interfaces for sources in the
same domain on the deep Web. Thus, given such schemas,
our goal is to discover all the synonym attributes.

Guided by the general MGS framework, we develop Algo-
rithm MGSsd (Figure 6), specifically for synonym attributes
discovery as the target question. MGSsd first defines the hy-
pothetical model structure for capturing synonym attributes
(Section 5.1), generates the model candidates with non-zero
probabilities (Section 5.2), and selects the sufficiently con-
sistent ones (Section 5.3). Beyond these essential steps, we
develop techniques for coping with several real-world issues
that complicate our statistical approach (Section 5.4). Fi-
nally, we put all the components together to present the
complete algorithm (Section 5.5).



5.1 Hypothesis Modeling
Following MGS, we first define the structure of the under-

lying model. Specifically, we aim at answering the target
question of synonym attributes for Web interfaces. (Inci-
dentally, our model can also capture the target question
of concept popularity.) We view a query interface as a
“flat” schema, or a set of attributes; e.g., amazon.com has
a schema {title, author, · · · }. This simple view is sufficient
for our purpose of synonym discovery. In particular, we do
not concern complex matching (e.g., author as last and first
name), which itself is another interesting target question.

To reasonably define a simple model, we make several as-
sumptions of how our schemas are generated. (Imagine a hu-
man Web developer generates such Web interfaces to bring
databases online.) First, concept mutual-independence: A
query interface contains several different concepts (e.g., “au-
thor” or “subject”). We assume that, in generating a schema
(which may not contain all concepts), different concepts are
selected independently.

Second, synonym mutual-exclusion: When multiple syn-
onyms exist for a concept (e.g., author and name), we assume
that, in generating a schema, no two synonyms will both be
selected. Such duplicated selections will create redundancy
and perhaps confusion; our case studies (of real sources; Sec-
tion 3.1) in fact have found no such schemas. As Section 5.2
will discuss, this mutual exclusion enables significant prun-
ing of the hypothetical model space.

Third, non-overlapping concepts: We assume that differ-
ent concepts do not overlap in semantics, i.e., no distinct
concepts will share attributes. This assumption holds in
most cases, when synonyms in the same concept are fully
equivalent : e.g., concepts {author, name} and {subject, cat-
egory} do not overlap. Thus this assumption says that all
concepts will form an equivalence partition of the vocabu-
lary set. However, as our case studies observed (Section 6),
sometimes an attribute can be a non-equivalent synonym to
others, and thus participate in distinct concepts– e.g., con-
cepts {author, last name} and {author, first name}, where
author corresponds to last name and first name in different
“senses.” This assumption excludes such cases: Instead of
complicating simple synonym equivalence, such cases can
be more systematically treated, by first grouping attributes
[last name, first name] (such grouping can itself be another
target question; see Section 4) and then finding equivalent
synonym {author, [last name, first name]} (see Section 6).

5.1.1 Model Structure
Based on our assumptions, we define a simple model for

capturing synonym attributes. Essentially, a model describes
how to generate schemas from a vocabulary of attributes.
Figure 4 visualizes MB (an example for book sources) as a
two-level tree, for vocabulary VB = {author, title, ISBN, sub-
ject, category}. To express synonyms, our model partitions
all attributes into concepts, or equivalent classes (by the
non-overlapping concepts assumption): e.g., C1: {author},
· · · , C4: {subject, category} in MB . The model will gener-
ate schemas by, first, independently selecting each concept
Ci with probability αi (by concept mutual-independence).
For any selected concept, the model will then choose ex-
actly one of its member attributes Aj with probability βj

(by synonym mutual-exclusion). The model thus generates
a schema with all the chosen attributes.

Definition 1: A schema model M is a 4-tuple (V, C, Pc, Pa):

MB

C1 C2 C3 C4

author title ISBN subject category

α1 α2 α3 α4

β1 = 1 β2 = 1 β3 = 1 β4 β5 = 1 − β4

Figure 4: An example of schema model MB.

The vocabulary V is a set of attributes {A1, · · · , An}. The
concept partition C is a set of concepts {C1, · · · , Cm} that
partition V (i.e., V =

�
Ci and Ci ∩ Ck = ∅). Pc is the

concept probability function, which determines the probabil-
ity αi for including concept Ci in schema generation. Pa

is the attribute probability function, which determines the
probability βj for selecting attribute Aj , once its concept is
included. For every concept Ci: � Aj∈Ci

βj = 1.

Notationally, we will write a model by parenthesizing at-
tributes in concepts with probability annotations, e.g.: (Fig-
ure 4) MB = {(author: β1): α1, (title: β2): α2, (ISBN: β3):
α3, (subject: β4, category: β5): α4}. When probabilities
are not critical in the context, we will simply write MB =
{(author), (title), (ISBN), (subject, category)}).

5.1.2 Schema Generation and Observations
We now discuss how a model M will generate schemas.

By Definition 1, M will simply decide, for each concept
Ci, if Ci is included, and if so, select one attribute Aj to
represent Ci. This process will generate a schema as a set
of attributes.

Example 2: For MB in Figure 4: Possible schemas (with
non-zero probabilities) from MB include: I1 = {author, title,
subject, ISBN} and I2 = {title, category, ISBN}.

Note that a model M, by definition, represents a genera-
tive distribution, giving probabilities for any schema that
can be generated. We now formalize such probabilities.
First, to generate a schema, M selects concepts to include:
By Definition 1, a concept Ci will appear with probability
Pr(Ci|M) = αi or otherwise Pr(¬Ci|M) = 1 − αi.

Next, we consider the probability of picking some at-
tribute: By Definition 1, the probability of selecting an in-
dividual attribute Aj in schema generation from M is:

Pr(Aj|M) =

�
αi × βj , ∃i : Aj ∈ Ci

0, otherwise

How about selecting a set of attributes A1, A2,.., Am from
M in any schema? Definition 1 implies this probability as
below, where the first condition represents synonym mutual-
exclusion and the other concept mutual-independence.

Pr(A1, A2, .., Am|M) =

�
0, ∃j 6= k, ∃i : Aj ∈ Ci ∧ Ak ∈ Ci�

Pr(Aj|M), otherwise

Putting together, we can derive the probability that M
will generate some schema I, denoted by Pr(I|M). Defini-
tion 2 below formalizes this instantiation probability. Specif-
ically, Pr(I|M) is the probability of used attributes times
the probability of unselected concepts.

Definition 2: For model M = (V, C, Pc, Pa), the instanti-
ation probability of a schema I = {A1,...,Am} is Pr(I|M) =
Pr(A1, A2, .., Am|M) ×

�
∀Aj ,Aj /∈Ci

Pr(¬Ci|M). We say I

can be instantiated from model M if Pr(I|M) > 0.



Example 3: Continuing Example 2: we have Pr(I1|MB) =
α1 ×α2 ×α3 ×α4 × β4, Pr(I2|MB) = (1−α1)×α2 ×α3 ×
α4 × β5, where (1 − α1) is the probability that the concept
C1 is not used. However, for I3 = {author, ISBN, subject,
category}, we have Pr(I3|MB) = 0, since subject and cate-
gory both belong to C4. Thus I1 and I2 can be instantiated
from MB, but I3 cannot.

Our approach seeks to discover the hidden model from
many schemas observed (as input). Therefore, we will take
a set of schemas I (e.g., the Web sources summarized in
Figure 2), our input, as schema observations. To emphasize
that in our input we may observe the same schema several
times, we write I as a set of 2-tuple 〈Ii, Bi〉. Each 〈Ii, Bi〉
denotes the number of occurrences Bi for each schema Ii.

To discover the hidden model, it is essential to answer:
Given model M, how likely will M generate the schemas
in I? (Or, how likely can we observe I, if M is the hid-
den model?) It follows Definition 2 that this probability is

Pr(I|M) =
�

Pr(Ii|M)Bi . Note that, if Pr(I|M) = 0,
it is impossible to observe I under M. Therefore, we say
model M is consistent with observations I, if Pr(I|M) >

0. Thus, the hypothesis generation finds these “consistent
models” as candidate hidden models (Section 5.2).

Example 4: Continuing Example 3: We may have obser-
vations I = {〈I1, 3〉, 〈I2, 5〉}, i.e., I1 3 times and I2 5 times.
Thus, Pr(I|MB) = Pr(I1|MB)3×Pr(I2|MB)5. Note MB

is consistent with I, since Pr(I1|MB) and Pr(I2|MB) are
both non-zero (Example 3).

5.2 Hypothesis Generation
Guided by the second step of the MGS framework, we now

generate candidate models that are likely to be sufficiently
consistent (which Section 5.3 will determine) with the input
observations I. It is clear that any candidate M has to be
at least consistent with I, i.e., Pr(I|M) > 0, so that I is at
least possible under M (Section 5.1). This section focuses
on constructing such models.

Intuitively, we want to reconstruct M from our given ob-
servations I. Using a statistical approach, we assume the
observations are unbiased and sufficient. First, by the unbi-
ased assumption, we will observe (or collect) a schema I with
a frequency in I proportional to how likely I will be gener-
ated under M, i.e., Pr(I|M). (Say, we will not collect only
schemas that contain author – that would be biased.) Sec-
ond, by the sufficient assumption, our observations will be
large enough, so that every possible schema is represented in
I. We use these assumptions to estimate the probability pa-
rameters (Pa and Pc) of a candidate model. In practice, the
sufficient assumption is likely not to be satisfied; we discuss
techniques for dealing with “the real world” in Section 5.4.

Our goal in hypothesis generation is, given I, to construct
models M = (V, C, Pc, Pa) so that Pr(I|M) > 0. To begin
with, we determine V: By our above assumptions, V =

�
Ii,

since every possible schema occurs in I, and so does every
attribute in V. On the other hand, even if the observations
are not perfect, for our purpose of matching, we do not care
any “phantom” attributes that have not occurred in any
input source. Thus, our model will capture only attributes
that are used by at least one schema (in I).

Next, having determined V, we complete the model (V, C,
Pc, Pa) by constructing first the concept partition C (Sec-
tion 5.2.1), and then the probabilities Pc, Pa (Section 5.2.2).

5.2.1 Building Concept Partitions
Given the vocabulary set V, we first construct a concept

partition C for a candidate model. By Definition 1, C is a
partition of V. It is clear that, given V, there can easily be
a large number of possible partitions. The number of parti-
tions for an n-set is called a Bell number B(n), which has
an exponential generating function and satisfies recursive

relation B(n + 1) = � n
k=0 B(k)(

n

k
). A vocabulary with,

say, 12 attributes will thus have 4213597 possible concept
partitions (and as many possible models).

To cope with the large space, it is thus critical to focus on
only concept partitions that can lead to consistent models
(M, such that Pr(I|M) > 0). These consistent models
form the hypothesis space with respect to I. Our case studies
show that the “consistent” condition can prune the search
space to a very small number of models. For instance, in the
book domain, we only have 20 models left in the hypothesis
space with 12 attributes. To construct the hypothesis space,
a naive approach that constructs and test every hypothesis
will not work, due to the large number of possible concept
partitions (as just discussed).

However, not all concept partitions are useful for con-
structing a consistent model: It is important to note that,
not every model (with arbitrary concept partitions) can gen-
erate a schema observed. In particular, as Example 3 showed,
I3 cannot be observed under MB, or Pr(I3|MB) = 0, since
subject and category are both synonyms in C4 (Figure 4).
Thus, if I3 is in I as part of our input schema, we will
not consider MB, since it will be inconsistent with I, i.e.,
Pr(I|MB) = 0 as Pr(I3|MB) = 0.

We can easily generalize this idea to focus on models that
will not “contradict” with any observed schema I. In such
models, none of the concepts will contain attributes Aj and
Ak that are used by I. (In Example 3, MB is not good for I3,
since MB contains C4 with attributes subject and category
both from I3.) That is, we will construct consistent models
by using only consistent concepts, which do not contain any
co-occurring attributes from any schema in I. Property 1
formalizes this idea.

Property 1: Given observations I with vocabulary V, let
C = {C1, · · · , Cm} be a concept partition for vocabulary V.
Any model M constructed from C will be inconsistent with
I, or Pr(I|M) = 0, if for some attributes Aj and Ak, both
of the following hold:

1. ∃ schema I ∈ I, such that Aj ∈ I and Ak ∈ I.

2. ∃ concept Ci ∈ C, such that Aj ∈ Ci and Ak ∈ Ci.

Based on Property 1, we use a two-step process to build
the hypothesis space (of consistent models) using consistent
concepts as building blocks. (For instance, MB in Figure 4
is built upon concepts C1, · · · , C4.) Step 1, consistent-

ConceptsConstruction, will first find all consistent con-
cept, and Step 2, buildHypothesisSpace, will then build
consistent models accordingly. These two procedures are
used to build the initial hypothesis space in Algorithm MGSsd.

In Step 1, we can translate the problem of finding con-
sistent concepts into finding all cliques in an attribute “co-
occurrence graph” [6]. Specifically, we construct a concept
network from our observations I: In this graph, a node rep-
resents an attribute, and an edge exists between attributes
Aj and Ak if and only if they do not co-occur in any schema
I in I. Thus, non-cooccurring attributes will be connected



author

subject

title

category

ISBN

Figure 5: An example concept network.

with an edge– Precisely such attributes will form consistent
concepts. However, a concept can be of any number of at-
tributes. Therefore, we look for cliques for any size in the
graph to construct consistent concepts.

Example 5: Consider observations I in Example 4. From
I, we can derive its concept network in Figure 5. In par-
ticular, author and title do not have an edge because they
co-occur in I1. Author and category have an edge since they
do not co-occur in any schema.

Further, what can be consistent concepts? There are 7
cliques in Figure 5: {author}, {title}, {subject}, {category},
{ISBN}, {author, category}, and {subject, category}. Any
clique represents a cluster of non-cooccurring attributes, and
therefore is a consistent concept (by Property 1). In partic-
ular, some of these concepts, such as {author} and {subject,
category}, are part of MB, which is consistent with I (as
Example 4 explained).

In Step 2, we use the consistent concepts just obtained as
the building blocks for constructing consistent models. Since
all the concepts in a model partition its vocabulary set V,
this step is essentially a classic set cover problem [6], with
the covering subsets being non-overlapping. That is, given
some subsets (the consistent concepts) of set V, we want to
select some non-overlapping subsets to cover V. Below we
illustrate the result of constructing all the consistent mod-
els as the hypothesis space, which concludes our hypothesis
generation step in this section.

Example 6: Given the consistent concepts in Example 5,
we can construct a consistent model M1 = {(author), (title),
(ISBN), (subject), (category)}, since the five concepts par-
tition the vocabulary. We can find all the other consistent
models: M2 = {(author), (title), (ISBN), (subject, category)}
and M3 = {(author, category), (title), (ISBN), (subject)}.
The hypothesis space is therefore {M1, M2, M3}.

5.2.2 Building Probability Functions
We have generated all the consistent models, which form

the hypothesis space. However, these models are still incom-
plete: As a 4-tuple (V, C, Pc, Pa), M has yet to determine
the probability functions Pc and Pa, although V and C are
specified. Recall our ultimate goal is to discover those hid-
den models that are sufficiently consistent with input I. So
far, for each consistent model M, by building upon only
consistent concepts, we guarantee that Pr(I|M) is not nec-
essarily zero. Therefore, there exist Pc and Pa assignments
for M, such that Pr(I|M) > 0.

To complete each of these consistent models, we still need
to specify Pc and Pa– clearly these probabilities should fur-
ther maximize Pr(I|M). The reason is that with the as-
sumptions of unbiased and sufficient input data, the values
of Pc and Pa must be the ones that make the model the most
consistent with the data. The “consistency” is reflected as
the instantiation probability. So the most consistent model
is corresponding to the model with the highest probability.
Thus, we have an optimization problem to find

max
Pc,Pa

Pr(I|M(V, C, Pc, Pa)), (1)

which is essentially the maximum likelihood estimation prob-
lem, for given V and C.

Example 7: Continue Example 6, where we showed M2 as
one of the consistent models. To completely specify M2, we
need to determine Pc and Pa to maximize Pr(I|M2) (for I
given in Example 4).

As Example 4 derives (note M2 and MB are the same
model): Pr(I|M2) = Pr(I1|M2)

3 × Pr(I2|M2)
5 = α3

1 ×
(1 − α1)

5 × α8
2 × α8

3 × α8
4 × β3

4 × β5
5 . We apply maximum

likelihood estimation to select those α’s and β’s that can
maximize Pr(I|M2). The result is α1 = 0.375, α2 = 1, α3 =
1, α4 = 1, β4 = 0.375, and β5 = 0.625.

In maximum likelihood estimation of functions Pc and Pa,
we are effectively estimating parameters αi and βj (Defini-
tion 1). Since concepts are independently selected (the con-
cept mutual independence assumption of Section 5.1), each
αi can be estimated independently. We can also derive the
solution for βj based on [3], since βj in a concept Ci form a
multinomial distribution. Therefore, for any schema model,
Equation 1 has the closed-form solutions:

α∗
i = � Aj∈Ci

Oj

|I|
, β∗

j =
Oj

� Aj∈Ci
Oj

where Oj is the frequency of attribute Aj in observations I
(i.e., the number of schemas that contain Aj), and |I| is the
total number of schemas in I.

5.3 Hypothesis Selection
Guided by the third step of the MGS framework, we need

to select sufficiently consistent hypotheses. After hypothesis
generation, a hypothesis is a determined model (distribu-
tion) M = (V, C, Pc, Pa). We propose to apply χ2 hypoth-
esis testing to quantify how consistent the schema model is
with the data. Below we briefly introduce χ2 testing [3].

Suppose we have n independent observations (schemas)
and in each observation, precisely one of r events (schemas
with non-zero probability), I1, .., Ir must happen, and their
respective probabilities are p1, .., pr, with � r

j=1 pj = 1. Sup-
pose that p10, .., pr0 are the respective instantiation proba-
bilities of the observed I1, .., Ir with respect to the tested
model M, with � r

j=1 pj0 = 1. We want to test the hypoth-
esis p1 = p10, .., pr = pr0 by considering the statistic

D2 = � r
j=1

(Bj−npj0)2

npj0

where n is essentially |I|. It can be shown that D2 has
asymptotically a χ2 distribution with r − 1 degrees of free-
dom. Again a test of the null hypothesis H : p1 = p10, .., pr =
pr0 at the 100a% significance level is obtained by choosing a
number b such that Pr{D2 > b} = a, where D2 has the χ2

distribution with r−1 degrees, and rejecting the hypothesis
if a value of D2 greater than b is actually observed.

Example 8: Assume we have observations I = {〈I1, 6〉,
〈I2, 3〉, 〈I3, 1〉}, with I1 = {author, subject}, I2 = {author,
category}, and I3 = {subject}. Our goal is to select the
schema model at the significance level 0.05. The hypothesis
generation step will output two hypotheses(models):

M1 = {(author:1):0.6,(subject:0.7,category:0.3):1} and
M2 = {(author:1):0.6,(subject:1):0.7,(category:1):0.3}.



We first consider M1. Four schemas can be instanti-
ated from M1: {subject}, {category}, {author, subject}, and
{author, category} with instantiation probabilities 0.28, 0.12,
0.42, and 0.18 respectively. Thus, the computation of D2

is: D2(M1) = (1−10∗0.28)2

10∗0.28
+ (0−10∗0.12)2

10∗0.12
+ (6−10∗0.42)2

10∗0.42
+

(3−10∗0.18)2

10∗0.18

.
= 3.93 with freedom degree 3. The χ2 distri-

bution table shows Pr(D2 > 7.815) = 0.05 at that freedom
degree. Since 3.93 < 7.815, we accept this hypothesis and
consider it as a sufficiently consistent schema model.

M2 is processed in the same way. Eight schemas can be
instantiated from M2: {}, {author}, {subject}, {category},
{author, subject}, {author, category}, {subject, category}, and
{author, subject, category} with probabilities 0.084, 0.126,
0.196, 0.036, 0.294, 0.054, 0.084, and 0.126 respectively.
Then we have D2(M2)

.
= 20.20 with freedom degree 7. The

χ2 distribution table shows Pr(D2 > 14.067) = 0.05. Since
20.20 > 14.067, we should not select M2. Therefore, hy-
pothesis selection will select M1 as the schema model.

5.4 Dealing With the Real World
We presented the overall process of Algorithm MGSsd,

guided by the general principles of the MGS framework.
Further, there are often “real-world” issues on data observa-
tions that can compromise a statistical approach like ours.
We find that, specifically for schema matching, the key chal-
lenge is the extremely “unbalanced” attribute distribution–
We observed a Zipf-like distribution (Figure 3b) of attributes
in our analysis of deep Web sources (Section 3).

Challenges arise on the either end of this Zipf distribu-
tion: On one hand, the head-ranked attributes (e.g., ti and
au in Figure 3b) are extremely frequent, occurring in al-
most every schema: Their occurrences tend to dominate any
models and thus render these models indiscriminate under
hypothesis testing (as Section 5.3 developed). Section 5.4.3
addresses dominating attributes with incremental consensus
projection to isolate their effects.

On the other hand, the tail-ranked attributes (e.g., those
not shown in Figure 3b) are extremely rare, often occurring
only once in some schema. Their occurrences in observa-
tions (while rare) tend to “confuse” our statistical approach
that asserts sufficient samples. In principle, a rare attribute
A can appear in many concepts (by combining with other
attributes in schema generation). Also, as A being rare,
these “A-schemas” are unlikely to be observed in I if it is
not arbitrarily large– Thus A will compromise a statistical
approach for the lack of schemas. Section 5.4.1 addresses
rare attributes with attribute selection.

Together, this head-often, tail-rare attribute distribution
will imply similar non-uniformness of schemas. Thus, some
schemas (with rare attributes) will be extremely rare too.
Our hypothesis testing essentially relies on estimating schema
frequencies Bj (Section 5.3). A rare schema I occurring only
once in I tends to result in an overestimated frequency, or
I needs to be arbitrarily large to justify I’s only occurrence
being sufficiently rare. Section 5.4.2 addresses rare schemas
by “smoothing.”

5.4.1 Attribute Selection
Rare attributes can confuse a statistical approach, with

their lack of complete schemas in our observations I. Such
rare attributes will require virtually arbitrarily large I to
give them sufficient context. That is, for these rare at-
tributes, I is unlikely to be sufficient to statistically “ex-

plain” their properties– Thus, our sufficient assumption (Sec-
tion 5.2) is unlikely to hold for such attributes. To draw valid
statistical results, our approach is to systematically remove
rare attributes– they are effectively “noises” in our setting.

Fortunately, these rare attributes may indeed be unim-
portant in schema matching. As Section 3.1 explained, with
Zipf distribution, most rare attributes occur in only one
source. Thus, few other sources will find these attributes
useful in query mediation or data exchange. (A mediator
will not be likely to support such attributes; they are nei-
ther “mediatable” nor “exchangeable.”) We believe it is
naturally justified to remove rare noises in matching.

We believe systematic attribute selection will be crucial for
finding attribute subsets, for which robust statistical results
can be achieved. We use a frequency-based pruning to se-
lect only frequent attributes into vocabulary V (Section 5.2),
as a procedure attributeSelection in Algorithm MGSsd

(Figure 6). Specifically, we select an attribute Aj if its ob-
servation frequency Oj ≥ f , where f is a given threshold set
as 10% in our experiments. While this empirical value works
well (Section 6), further investigation is clearly necessary to
automate threshold selection.

5.4.2 Rare Schema Smoothing
Our observations I may contain infrequent schemas I that

are presumably rare, as explained earlier. In particular, the
χ2 testing (Section 5.3) evaluates the difference between the
estimated probabilities Pr(I|M) and the observed frequen-
cies Bj . For infrequent schemas, such difference will signif-
icantly distort the closeness of D2 to the χ2 distribution,
which may influence the result of hypothesis selection.

Example 9: Suppose our observations I = {〈I1, 45〉, 〈I2, 5〉,
〈I3, 2〉, 〈I4, 1〉}, with I1 = {author}, I2 = {last name}, I3 =
{author, price}, and I4 = {price}. The hypothesis generation
will find three hypotheses:

M1={(author:.9,last name:.1):.98,(price:1):.06}
M2={(author:1):.89,(last name:.62,price:.38):.15}
M3={(author:1):.89,(last name:1):.09,(price:1):.06}.
The probabilities of I4 in M1, M2, and M3 are .0012,

.0064, and .0058 respectively, which indicates I4 a rare schema.
The χ2 testing will in fact reject all three models (at the sig-
nificance level 0.05).

Note that even the correct model M1 does not pass the
test, simply because the early observation of the rare schema
I4 results in an unreliable estimation of its probability. Thus
the rare schema disturbs the result.

We cope with this problem by rare schema smoothing : In-
stead of regarding each possible schema Ij as an individual
event (Section 5.3), we will aggregate infrequent schemas
into a conceptual event Irare, whose probability is the sum
of the probabilities of its members. Such aggregation will
smooth the overestimation in frequency counting, thus giv-
ing more reliable probability indication [12]. We will then
take χ2 testing on those frequent events plus Irare.

The key issue is then how to determine whether a schema
Ij is rare. Our basis is its frequency in observations I (with
size |I|), since the real probability is hidden to be discovered.
We apply two criteria: 1) If not observed in I, Ij is rare. 2)
If observed, Ij is rare if Pr(Ij|M) × |I| < Tsmooth, where
Tsmooth is a threshold (dynamically determined).

We further develop adaptive thresholding of Tsmooth in
smoothing, as a procedure dynamicSelection in Algorithm
MGSsd (Figure 6): During hypothesis selection (Section 5.3),



we test the hypotheses with increasing thresholds until reach-
ing at least one qualified hypothesis. (Implicitly, we are
applying our motivating assertion that there must exist a
correct hidden model.) Otherwise, it will output all the hy-
potheses, since they are not distinguishable (and at least one
must be correct). Empirically, we start the adaptive thresh-
olding at Tsmooth = 0.2 with a step size 0.1, and stop at 1.0,
which works well (Section 6).

5.4.3 Consensus Projection
Straightforward testing cannot always distinguish models

that share a dominating “consensus” (which makes other dif-
ferences insignificant). As explained earlier, the head-ranked
attributes often dominate the testing and thus all these mod-
els may agree on the “structure” of these attributes– Such
consensus can be recognized (for early conclusion) and pro-
jected (for isolating dominating attributes). Note that we
assume a consensus must be correct, based on our motivat-
ing assertion that there exists at least a correct model.

Example 10: Suppose our observations I = {〈I1, 45〉, 〈I2, 6〉,
〈I3, 2〉, 〈I4, 4〉} with I1 = {title}, I2 = {title, subject}, I3 =
{title, subject, price}, and I4 = {title, category}. Hypothesis
generation will output three hypotheses:

M1={(title:1):1,(subject:.67,category:.33):.21,(price:1):.035}
M2={(title:1):1,(subject:1):.14,(category:.67,price:.33):.11}
M3={(title:1):1,(subject:1):.14,(category:1):.07,(price:1):.035}.
The χ2 hypothesis testing will reject all the three models

at the significance level 0.05. In fact, their D2 values are
not distinguishable– due to the highly frequent attribute
title, which dominates the χ2 testing. However, it is clear
that they all share a “consensus” on title.

We thus propose consensus projection for recognizing and
extracting consensuses (or shared concepts across models),
so that hypothesis testing will better focus on models’ dis-
tinctions. Note that, the soundness of such projection (of
consensus concepts) follows our concept mutual indepen-
dence assumption (Section 5.1).

Specifically, consensus projection will extract the consen-
sus from all the models in the hypothesis space. Also it will
extract the consensus attributes from the observed schemas
and aggregate the projected schemas that become identical.
The projection and aggregation will result in a new set of
input schemas, which are used for the re-estimation of the
parameters of the projected models. Such projection can
be repeated, since more consensuses will gradually emerge
as the algorithm progresses. We can then discover the final
models incrementally by projecting consensuses in progres-
sive iterations. We thus structure Algorithm MGSsd as an
iterative framework, as Section 5.5 will discuss.

Example 11: Continuing Example 10: We recognize con-
cept (title) as the consensus. We thus perform consensus
projection to extract (title) from all hypotheses and attribute
title from all schemas in I.

So we have H∗ = π{subject,category,price}(H), with
M∗

1={(subject:.67,category:.33):1,(price:1):.17}
M∗

2={(subject:1):.67,(category:.67,price:.33):.5}
M∗

3={(subject:1):.67,(category:1):.33,(price:1):.17}
and I∗ = π{subject,category,price}(I) = {〈I∗

2 , 6〉, 〈I∗
3 , 2〉, 〈I∗

4 , 4〉}
with I∗

2 = {subject}, I∗
3 = {subject, price}, and I∗

4 = {category}.
I∗
1 is empty after projection and thus removed. The new

parameters of M∗ are estimated from I∗ with maximum
likelihood estimation. The χ2 testing will select M∗

1 (and
reject others) at the significance level 0.05.

5.5 Putting It All Together: Algorithm MGSsd

For solving the target question of synonym attributes, Al-
gorithm MGSsd (Figure 6) consists of two phases: building
initial hypothesis space and iteratively discovering the hid-
den models. The first phase selects the attributes as the
vocabulary (Section 5.4.1) and builds the hypothesis space
(Section 5.2.1). The iterative process is based on consen-
sus projection (Section 5.4.3): In each iteration, it projects
the consensus, re-estimates the parameters (Section 5.2.2),
and tests the hypotheses (Section 5.3) with the smoothing
technique (Section 5.4.2).

Example 12: Consider the book domain sources listed in
Figure 8, the iterative process is illustrated in Figure 7.
In the first iteration, the consensus consists of concepts
(ti), (is), (kw), (pr), (fm), and (pd). The dynamicSelec-

tion function will select four hypotheses as selectedH with
Tsmooth as 0.5, which are listed in the third column of the
1st iteration of Figure 7. In the second iteration, the con-
sensus consists of concept (pu). The dynamicSelection

function will select two hypotheses among the four in the
1st iteration. In the third iteration, the consensus is (su, cg)
and dynamicSelection cannot find any passing hypothe-
sis with all the Tsmooth’s. Therefore, the algorithm will stop
and output two discovered schema models: M1 = {(ti), (is),
(kw), (pr), (fm), (pd), (pu), (su, cg), (au, ln), (fn)} and M2

= {(ti), (is), (kw), (pr), (fm), (pd), (pu), (su, cg), (au, fn),
(ln)}, where the parameters α’s and β’s are omitted.

The time complexity of MGSsd is exponential with respect
to the number of attributes. For instance, the complexity of
consistentConceptsConstruction is exponential since
the clique problem is NP-complete. Similarly, the steps of
buildHypothesisSpace and dynamicSelection are both
exponential. Since schema matching is typically done “off-
line,” such computation time may still be tolerable in most
situations. For instance, in our experimental setting (Sec-
tion 6), the running time is typically within one minute.
Further, our observation in Section 3 indicates that in prac-
tice the computation is likely to scale to many sources:
Even with more sources, their aggregate vocabulary tends
to converge– The growth of attributes and thus the corre-
sponding computation cost are likely to stop at some point.
Nevertheless, it is certainly a real issue to explore more ef-
ficient algorithms, as Section 7 discusses.

6. CASE STUDIES
To evaluate the MGSsd framework, we test it with four

domains of sources on the deep Web. We design two suites of
metrics to quantify the accuracy of both the model itself and
its ability to answer the target questions. The experimental
results show remarkable accuracy for both metrics.

6.1 Experiment Setup
We collect over 200 sources over four domains as stated

in Section 3.1. For each source, we manually extracted
attributes from its query interface and did some straight-
forward preprocessing to merge attributes of slight textual
variations (e.g., author’s name and author). Thus, we fo-
cus on discovering synonym attributes and consider such at-
tribute extraction and preprocessing as independent tasks.
In particular, attribute extraction (e.g., extracting “author’s
name” from “please input author’s name”) can be auto-
mated with noun-phrase extraction tools, such as LinkIT



kth consensus hypotheses pass kth iteration Tsmooth

1st (ti),(is),(kw), {(au:0.85,ln:0.15):0.98,(pu:1):0.25,(su:1):0.2,(cg:1):0.13,(fn:1):0.11} 0.5
(pr),(fm),(pd) {(au:0.85,ln:0.15):0.98,(pu:1):0.25,(su:0.61,cg:0.39):0.33,(fn:1):0.11}

{(au:0.88,fn:0.12):0.95,(pu:1):0.25,(su:1):0.2,(cg:1):0.13,(ln:1):0.15}
{(au:0.88,fn:0.12):0.95,(pu:1):0.25,(su:0.61,cg:0.39):0.33,(ln:1):0.15}

2nd (pu) {(au:0.85,ln:0.15):0.98,(su:0.61,cg:0.39):0.33,(fn:1):0.11} 0.6
{(au:0.88,fn:0.12):0.95,(su:0.61,cg:0.39):0.33,(ln:1):0.15}

3rd (su,cg) {(au:0.85,ln:0.15):1,(fn:1):0.11} 1.0
{(au:0.88,fn:0.12):0.96,(ln:1):0.15}

4th ∅

Figure 7: Process of discovering schema model for the book domain.

domain vocabulary (abbreviation)
books title(ti),author(au),ISBN(is),keyword(kw),publisher(pu),subject(su),last name(ln),

format(fm),category(cg),price(pr),first name(fn),publication date(pd)
movies title(ti),director(dr),actor(ac),genre(gn),format(fm),category(cg),

keyword(kw),rating(rt),price(pr),studio(sd),star(st),artist(at)
music records artist(at),song(sg),album(ab),title(ti),label(lb),format(fm),

genre(gn),soundtrack(sr),catalog #(ct),keyword(kw),band(bn)
automobiles make(mk),model(md),price(pr),year(yr),type(tp),zip code(zc),

mileage(ml),style(sy),color(cl),state(st),category(cg)

Figure 8: Vocabularies of the four domains.

Require: SchemaSet I, SignificanceLevel a
1: /* Initial Hypothesis Generation: */
2: V = attributeSelection(

�
Ii)

3: C = consistentConceptsConstruction(I)
4: H = buildHypothesisSpace(C)
5: /* Iterative Framework: */
6: while true do
7: conAttrs = attributes in the consensus of H
8: if conAttrs = ∅ or V = conAttrs then
9: output the initial models of H

10: else
11: /* consensus projection */
12: V = V − conAttrs; I∗ = πV(I); H∗ = πV (H)
13: /* maximum likelihood estimation */
14: for each M in H∗ do
15: estimate parameters α, β of M using I∗

16: end for
17: /* hypothesis selection: χ2 testing+smoothing */
18: selectedH = dynamicSelection(H∗)
19: /* new hypothesis space for next iteration*/
20: H = selectedH
21: end if
22: end while

Figure 6: Algorithm MGSsd.

(http://www.columbia.edu/cu/cria/SigTops/). Moreover, our
preprocessing simply matched entities with obvious textual
similarity (e.g., book title and title), which could be done
with more sophisticated techniques such as [5].

In the experiments, we select the attributes using the ap-
proach proposed in Section 5.4.1 with threshold f = 10%.
The attributes passing that threshold are listed in Figure 8.
Also, in the experiments we assume 0.05 as the significance
level of χ2 hypothesis testing. In practice, the threshold and
significance level can be specified by users.

6.2 Metrics
We propose two suites of metrics for different purposes.

The first suite is generic since it measures how the hypoth-
esized schema model is close to the correct schema model
written by human experts. The second suite of metrics is
specific in the sense that it measures how good the hypoth-
esized schema model can answer the target questions.

First, we introduce the notion of correct schema model.

A correct schema model Mc is a schema model where at-
tributes are correctly partitioned into concepts. Since it is
difficult and unreliable (even for human experts) to spec-
ify the ideal probability parameters, we assign them using
maximum likelihood estimation, which is consistent with the
“unbias” and “sufficient” assumptions in Section 5.2.

The purpose of the first suite of metrics is to compare
two models (or distributions). We view each distribution as
a set of schemas (instantiated from that distribution), as-
sociated with a probability (or member frequency). Thus,
we adopt precision and recall to measure this “member fre-
quency”. We define Ins(M) as the set of all schemas that
can be instantiated from M. Precision is designed to mea-
sure the portion of the hypothesized set that is correct. In
our case, the correct part is the intersection of Ins(Mh) and
Ins(Mc), denoted by S. So the model precision is:

PM (Mh,Mc) = � I∈S Pr(I|Mh)

� I∈Ins(Mh) Pr(I|Mh)
= � I∈S Pr(I|Mh),

where � I∈Ins(M) Pr(I|M) = 1 for any model M. Simi-

larly, model recall measures the portion of Mc that is con-
tained in Mh, which is RM (Mh,Mc) = � I∈S Pr(I|Mc).

Example 13: Consider Example 8, we can see that the cor-
rect schema model is actually M1 and thus both model pre-
cision and recall of M1 are 1.0. Now consider M2, although
it is rejected, we still can measure it as an example. Exam-
ple 8 has shown the schemas and instantiation probabilities
of Ins(M2) and Ins(Mc). So S contains four schemas:
{subject}, {category}, {author, subject} and {author, cate-
gory}. Then we can compute the model precision and recall
as PM (M2,Mc) = 0.196+0.036+0.294+0.054 = 0.58 and
RM (M2,Mc) = 0.28 + 0.12 + 0.42 + 0.18 = 1.

The second suite of metrics measures how the model is
correct in answering the target questions. In our case, the
target question is to ask for the synonyms of attributes.
Specifically, we imagine there is a “random querier” who
will ask for the synonyms of each attribute according to the
probability of that attribute. The model will answer each
question by returning the set of synonyms of the queried
attribute in that model. We define Syn(Aj |M) as the set
of synonyms of attribute Aj in model M. To compare two
synonym sets, precision and recall are again applied. Given



domain output models PM RM PT RT

movies Mmovie1 = {(ti),(dr),(fm),(rt),(pr),(sd),(kw),(ac,st),(gn,cg),(at)} 0.94 1 1 0.88
Mmovie2 = {(ti),(dr),(fm),(rt),(pr),(sd),(kw),(ac,st,at),(gn),(cg)} 0.96 1 1 0.88
Mmovie3 = {(ti),(dr),(fm),(rt),(pr),(sd),(kw),(ac,st,at),(gn,cg)} 1 1 1 1

music Mmusic1 = {(sg),(lb),(fm),(at,bn),(ab,ti),(gn),(sr),(kw),(ct)} 1 1 1 1
records Mmusic2 = {(sg),(lb),(fm),(at,bn),(ab,ti),(gn),(sr),(kw,ct)} 1 0.99 0.94 1

Mmusic3 = {(sg),(lb),(fm),(at,bn),(ab,ti),(gn),(sr,kw),(ct)} 1 0.99 0.94 1
Mmusic4 = {(sg),(lb),(fm),(at,bn),(ab,ti),(gn,sr),(kw),(ct)} 1 0.98 0.93 1
Mmusic5 = {(sg),(lb),(fm),(at,bn),(ab,ti),(gn,sr),(kw,ct)} 1 0.97 0.86 1

automobiles Mauto = {(mk),(md),(pr),(yr),(sy,tp,cg),(zc,cl),(st,ml)} 1 0.94 0.84 1

Figure 9: Experimental results for movies, music records and automobiles.

the correct model Mc and a hypothesized model Mh, the
precision and recall of the synonym sets of attribute Aj are:

PAj (Mh,Mc) =
|Syn(Aj |Mc)∩Syn(Aj|Mh)|

|Syn(Aj |Mh)|
and

RAj (Mh,Mc) =
|Syn(Aj|Mc)∩Syn(Aj|Mh)|

|Syn(Aj |Mc)|
.

For this “random querier,” more frequently observed at-
tributes have higher probabilities to be asked. Thus we com-
pute the weighted average of all the PAj ’s and RAj ’s as the
target precision and target recall. The weight is assigned as
a normalized probability of the attributes. That is, for at-

tribute Aj , the weight wj =
Pr(Aj |M)

� Aj
Pr(Aj |M)

=
αi×βj

� Aj
αi×βj

=

Oj

� Ok
(αi × βj =

Oj

|I|
according to the formulae in Sec-

tion 5.2.2). Therefore, target precision and target recall of
Mh with respect to Mc are defined as:

PT (Mh,Mc) = � Aj∈Vh

Oj

� Ok
PAj (Mh,Mc)

RT (Mh,Mc) = � Aj∈Vc

Oj

� Ok
RAj (Mh,Mc),

where Vh and Vc are the vocabulary sets of Mh and Mc.

Example 14: Still consider Example 8, the target preci-
sion and recall of M1 are both 1.0 since M1 is the cor-
rect schema model. For M2, we have Pauthor(M2,Mc) = 1
and Rauthor(M2,Mc) = 1 since author is correctly parti-
tioned in M2. However, for subject, we have Syn(subject
|Mc) = {category} and Syn(subject |M2) = ∅. There-
fore Psubject(M2,M1) = 1 and Rsubject(M2,M1) = 0. We
do the same measurement on category and then compute
the weighted average. The occurrences of author, subject,
and category are 9, 7, and 3 respectively. Thus, the re-
sults are PT (M2,Mc) = 9

19
× 1 + 7

19
× 1 + 3

19
× 1 = 1 and

RT (M2,Mc) = 9
19

× 1 + 7
19

× 0 + 3
19

× 0 = 0.47.

6.3 Experimental Results
We report and discuss the experimental results for the

book domain. For other domains, we only show the input
and output. Figure 8 lists all the selected attributes. The
result shows two sufficiently consistent models: Mbook1 =
{(ti:1):.98, (is:1):.8, (kw:1):.56, (pr:1):.13, (fm:1):.13, (pd:1):.1,
(pu:1):.25, (su:.61, cg:.39):.33, (au:.85, ln:.15):.98, (fn:1):.11}
and Mbook2 = {(ti:1):.98, (is:1) :.8, (kw:1):.56, (pr:1):.13,
(fm:1):.13, (pd:1):.1, (pu:1):.25, (su:.61, cg:.39):.33, (au:.88,
fn:.12):.95, (ln:1):.15}.

The result successfully identifies the matchings (au, ln),
(au, fn) and (su, cg). Without attribute grouping tech-
niques (Section 5.1) to merge last name and first name, hu-
man experts can only consider that Mbook1 and Mbook2 both
are correct schema models and thus give 1.0 precision and
1.0 recall in both model and target metrics. As stated in
Section 5.1, attribute grouping is a different target ques-
tion. Assume another specialized framework MGSag have
done this task, then the result will be Mbook = {(ti:1):.98,

(is:1):.8, (kw:1):.56, (pr:1):.13, (fm:1):.13, (pd:1):.1, (pu:1):.25,
(su:.61, cg:.39):.33, (au:.85, [ln,fn]:.15):.98)}, which is per-
fectly accurate in the sense of “equivalent synonym.” In ad-
dition, the parameters in the results can be used to answer
the question of concept popularity (Section 5.1), which in-
dicates that this model is not limited to synonym discovery.

For the other three domains: movies, music records, and
automobiles, their output is summarized in Figure 9. The
results show that our approach can identify most concepts
correctly. In movies and music records, the correct schema
model is returned in our output models, which are Mmovie3

and Mmusic1 respectively. However, for automobiles, we
did not get the correct model. The incorrect matchings are
due to the small number of observations we have. If we
observe more sources, we should be able to observe some co-
occurrences to remove false synonyms. For example, in the
automobile domain, the incorrect matchings (zc, cl) and (st,
ml) are because we did not observe the co-occurrences of zip
code and color, state and mileage. With larger observation
size, we believe the result will be better.

The measurement results in Figure 9 show that we do
need two suites of metrics because they evaluate different as-
pects. For instance, the model recall of Mmovie1 = 1 means
Mmovie1 can generate all correct instances, while the target
precision of Mmovie1 = 1 denotes the synonyms answered
by Mmovie1 are all correct ones.

Finally, although in principle the time complexity of MGSsd

is exponential, in our experiments, the overall execution
time is within one minute (on a Pentium-III 700GHz with
128MB memory). Therefore, we believe that in practice
the computation cost is likely to be acceptable for schema-
matching as an off-line process.

7. DISCUSSION
In our study for statistical schema matching, we also ob-

served some open issues that warrant further research. First,
as inherent in statistical methods, our approach handles only
frequent attributes with sufficient observations. (However,
a more principled attribute selection may help to include
rare attributes in popular concepts; see later.) Is it still use-
ful then? Section 3 observed that these frequent attributes,
while small in number, dominate 80% occurrences (because
of the Zipf-like distribution). Thus, in the sense of the clas-
sic 80-20 rule, our technique is appealing in coping with
at least the “vital few,” although it leaves out the “trivial
many” (that are likely unimportant). Further, as Section 4
mentioned, the “solvability” will scale; i.e., more attributes
can be handled with more sources. Finally, we stress that,
for large-scale integration of sources for numerous domains
on the Web, automatic techniques like ours (even only for
frequent attributes in each domain) will be imperative, as
manual matching will not scale.



Second, can this approach deal with more expressive mod-
els for harder target questions, e.g., homonyms, hypernyms,
or complex m:n matchings? We are currently studying hy-
pernyms and complex matchings, for which we found the
framework promising. However, there is a fundamental lim-
itation: Our approach, relying on only attribute syntactic
names (but not semantics in data contents), cannot distin-
guish homonyms. For sources created in the same domains,
homonyms may be unlikely; we indeed found none in our
study of Web query interfaces. For other scenarios when
matching different domains, homonyms can be more signifi-
cant (e.g., title in books and jobs). We may thus incorporate
other techniques that consider more semantics (see below).

Third, can we reduce the exponential complexity of Al-
gorithm MGSsd? While such computation may be tolerable
as schema matching is typically off-line and input attributes
will likely converge (Section 5.5), cost reduction is clearly
necessary. We believe that, within the MGS framework, cost
reduction is possible by interleaving the model generation
and selection phases to greedily construct, rather than ex-
haustively search, the best models. (Analogously, cost-based
query optimization adopts, say, dynamic programming to
speedup search in the plan space.)

Fourth, how can our framework integrate various tech-
niques [16] for schema matching? We feel the statistical
approach can benefit from complementary techniques that
explore more “semantics” (e.g., data values for distinguish-
ing homonyms). We believe the framework can integrate
other techniques in a principled way, by “importing” their
results as an a priori probabilistic structure for vocabulary
V (currently structureless). Thus, say, a linguistic approach
may indicate that author and writer are likely synonyms,
with a score 0.7. Such vocabulary structure will then bias
the statistical framework toward better results.

Fifth, does a hidden model always exist for a collection
of schemas? Our approach hypothesizes such models. For
sources of the same domains, this hypothesis seems empiri-
cally appealing. (Our recent study [10] clusters schemas into
domains by such statistical models.) Can we relax to more
liberal notion of “domains”? For instance, some sources
only partially overlap in structure (e.g., automobiles and car
rental) – Can they be coped with by a statistical approach?

Sixth, there are several “knobs” in MGSsd that currently
rely on thresholds. In particular, we use frequency thresh-
olding (by 10%) for attribute selection, which might be too
crude: It can prune rare attributes that are actually in fre-
quent concepts (e.g., for books, binding and media type are
pruned, while their synonym format is among the top con-
cepts). Clearly, a more principled treatment will help in
distinguishing true “outlier” attributes.

Finally, can we leverage massive sources to enhance the
statistical approach? In principle, our approach relies on
having sufficient observations. In practice, we have devel-
oped a suite of techniques (Section 5.4) for alleviating insuf-
ficiency. Think the other way: Can we leverage the virtually
unlimited supply of sources on the Internet to help establish
the required statistical context for schema matching? For in-
stance, we may (automatically) collect many book sources,
just to help in integrating similar ones.

8. CONCLUSION
This paper explores statistical schema matching, by hy-

pothesizing and discovering hidden models that unify input
schemas. Our experience indicates high promise for moving

the traditional pairwise-attribute correspondence toward a
new paradigm of holistic matching of massive sources. This
approach is well suited for the new frontier of large-scale
networked databases, such as our focus of the deep Web.
We propose a general statistical framework MGS, and fur-
ther specialize it to develop Algorithm MGSsd for finding
synonym attributes. Our extensive case studies motivated
our approach as well as validated its effectiveness. We dis-
cussed several open issues, and we are eager to see how the
statistical paradigm and framework can be generally applied
in other schema matching scenarios.
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