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1. INTRODUCTION

The number of online information sources and receivers has grown at an
unprecedented rate in the last few years, contributed in large part by the
exponential growth of the Internet as well as advances in telecommunica-
tions technologies. Nonetheless, this increased physical connectivity (the
ability to exchange bits and bytes) does not necessarily lead to logical
connectivity (the ability to exchange information meaningfully). This prob-
lem is sometimes referred to as the need for semantic interoperability
[Sheth and Larson 1990] among autonomous and heterogeneous systems.

The Context Interchange strategy [Siegel and Madnick 1991; Sciore et al.
1994] is a mediator-based approach [Wiederhold 1992] for achieving se-
mantic interoperability among heterogeneous sources and receivers, con-
structed on the following tenets:

—the detection and reconciliation of semantic conflicts are system services
which are provided by a Context Mediator, and should be transparent to a
user; and

—the provision of such a mediation service requires only that the user
furnish a logical (declarative) specification of how data are interpreted in
sources and receivers, and how conflicts, when detected, should be re-
solved, but not what conflicts exists a priori between any two systems.

This approach toward semantic interoperability is unlike most traditional
integration strategies which either require users to engage in the detection
and reconciliation of conflicts (in the case of loosely coupled systems, e.g.,
MRDSM [Litwin and Abdellatif 1987], VIP-MDBMS [Kuhn and Ludwig
1988]), or insist that conflicts should be identified and reconciled, a priori,
by some system administrator, in one or more shared schemas (as in tightly
coupled systems, e.g., Multibase [Landers and Rosenberg 1982] and Mer-
maid [Templeton et al. 1987]). In addition, the proposed framework plays a
complementary role to an emerging class of integration strategies [Levy et
al. 1995b; Ullman 1997] where queries are formulated on an “ontology”
without specifying a priori what information sources are relevant for the
query. Although the use of a logical formalism for information integration
is not new (see, for example, Catarci and Lenzerini [1993] where inter-
schema dependencies are represented using description logics), our integra-
tion approach is different because we have chosen to focus on the semantics
of individual data items as opposed to conflicts at the schematic level.

With the above observations in mind, our goal in this article is (1) to
illustrate various novel features of the Context Interchange mediation
strategy and (2) to describe how the underlying representation and reason-
ing can be accomplished within a formal logical framework. Even though
this work originated from a long-standing research program, the features
and formalisms presented in this article are new with respect to our
previous works. Our proposal is also capable of supporting “multidatabase”
queries, queries on “shared views,” as well as queries on shared “ontolo-
gies,” while allowing semantic descriptions of disparate sources to remain
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loosely coupled to one another. The feasibility of this work has also been
validated in a prototype system which provides access to both traditional
data sources (e.g., Oracle data systems) as well as semistructured informa-
tion sources (e.g., Web sites).

The rest of this article is organized as follows. Following this introduc-
tion, we present a motivational example which is used to highlight the
Context Interchange strategy. Section 3 describes the Context Interchange
framework by introducing both the representational formalism and the
logical inferences underlying query mediation. Section 4 compares the
Context Interchange strategy with other integration approaches which
have been reported in the literature. The last section presents a summary
of our contributions and describes some ongoing thrusts.

Due to space constraints, we have aimed at providing the intuition by
grounding the discussion in examples where possible; a substantively
longer version of the article, presenting more of the technical details, is
available as a working paper [Goh et al. 1996]. A report on the Prototype
can also be found in Bressan et al. [1997a]. An in-depth discussion of the
context mediation procedure can be found in a separate report [Bressan et
al. 1997b].

As one might easily gather from examining the literature, research in
information integration is making progress in leaps and bounds. A detailed
discussion on the full variety of integration approaches and their accom-
plishments is beyond the scope of this article, and we gladly recommend
Hull [1997] for a comprehensive survey.

2. CONTEXT INTERCHANGE BY EXAMPLE

Consider the scenario shown in Figure 1, deliberately kept simple for
didactical reasons. Data on “revenue” and “expenses” (respectively) for
some collection of companies are available in two autonomously adminis-
tered data sources, each comprised of a single relation denoted by r1 and
r2 respectively. Suppose a user is interested in knowing which companies
have been “profitable” and their respective revenue: this query can be
formulated directly on the (export) schemas of the two sources as follows:

Q1: SELECT r1.cname, r1.revenue FROM r1, r2
WHERE r1.cname 5 r2.cname AND r1.revenue . r2.expenses;

(We assume, without loss of generality, that relation names are unique
across all data sources. This can always be accomplished via some renam-
ing scheme: say, by prefixing the relation name with the name of the data
source (e.g., db1#r1 ).) In the absence of any mediation, this query will
return the empty answer if it is executed over the extensional data set
shown in Figure 1.

The above query, however, does not take into account the fact that both
sources and receivers may have different contexts, i.e., they may embody
different assumptions on how information present should be interpreted.
To simplify the ensuing discussion, we assume that the data reported in the
two sources differ only in the currencies and scale-factors of “money
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amounts.” Specifically, in Source 1, all “money amounts” are reported using
a scale-factor of 1 and the currency of the country in which the company is
“incorporated”; the only exception is when they are reported in Japanese
Yen (JPY); in which case the scale-factor is 1000 . Source 2, on the other
hand, reports all “money amounts” in USDusing a scale-factor of 1. In the
light of these remarks, the (empty) answer returned by executing Q1 is
clearly not a “correct” answer, since the revenue of NTT (9,600,000 USD 5
1,000,000 3 1,000 3 0.0096 ) is numerically larger than the expenses
(5,000,000 ) reported in r2 . Notice that the derivation of this answer
requires access to other sources (r3 and r4 ) not explicitly named in the
user query.

In a Context Interchange system, the semantics of data (of those present
in a source, or of those expected by a receiver) can be explicitly represented
in the form of a context theory and a set of elevation axioms with reference
to a domain model (more about these later). As shown in Figure 2, queries
submitted to the system are intercepted by a Context Mediator, which
rewrites the user query to a mediated query. The Optimizer transforms this
to an optimized query plan, which takes into account a variety of cost
information. The optimized query plan is executed by an Executioner which
dispatches subqueries to individual systems, collates the results, under-
takes conversions which may be necessary when data are exchanged
between two systems, and returns the answers to the receiver. In the

country

USA
JPN

revenue

1 000 000
1 000 000

cname

IBM
NTT

country

USA
JPN

currency

USD
JPY

select r1.cname, r1.revenue
from r1, r2
where r1.cname = r2.cname 
and r1.revenue > r2.expenses;

cname

IBM
NTT

expenses

1 500 000
5 000 000

fromCur

USD
JPY

toCur

JPY
USD

104.0
.0096

exchangeRate

r3

CONTEXT c1 CONTEXT c2

r1

r4

r2

are reported in the currency of the country of incorporation.

scale-factor of 1, except for items reported in JPY,

where the scale-factor used is 1000.

using a scale-factor of 1.

all "money amounts" ("revenue" inclusive)

all "money amounts" are reported using a

all "money amounts" are reported in USD,

Fig. 1. Example scenario.
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remainder of this section, we describe three different paradigms for sup-
porting data access using this architecture.

2.1 Mediation of “Multidatabase” Queries

The query Q1 shown above is in fact similar to “multidatabase” MDSL
queries described in Litwin and Abdellatif [1987] whereby the export
schemas of individual data sources are explicitly referenced. Nonetheless,
unlike the approach advocated in Litwin and Abdellatif [1987], users
remain insulated from underlying semantic heterogeneity, i.e., they are not
required to undertake the detection or reconciliation of potential conflicts
between any two systems. In the Context Interchange system, this function
is assumed by the Context Mediator: for instance, the query Q1 is trans-
formed to the mediated query MQ1:

MQ1: SELECT r1.cname, r1.revenue FROM r1, r2, r4
WHERE r1.country 5 r4.country
AND r4.currency 5 ‘USD’
AND r1.cname 5 r2.cname
AND r1.revenue . r2.expenses;
UNION
SELECT r1.cname, r1.revenue * 1000 * r3.rate
FROM r1, r2, r3, r4
WHERE r1.country 5 r4.country
AND r4.currency 5 ‘JPY’
AND r1.cname 5 r2.cname
AND r3.fromCur 5 ‘JPY’
AND r3.toCur 5 ‘USD’
AND r1.revenue * 1000 * r3.rate . r2.expenses

MediatorOptimizerExecutioner Context

Non-traditional
Data Sources
(e.g., web-pages)

Wrapper

Model
Domain

Context
Axioms

Context
Axioms

Context
Axioms

Optimized
SQL Query

Local DBMS

subquery
answers

subquery

supporting intermediate
processing

Local DBMS

Mediated

User

CONTEXT MEDIATION SERVICES

Wrapper

subquery

Query

Elevation
Axioms Elevation

Axioms

Query

Extensional Answers

Fig. 2. Architecture of a Context Interchange system.
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UNION
SELECT r1.cname, r1.revenue * r3.rate
FROM r1, r2, r3, r4
WHERE r1.country 5 r4.country
AND r4.currency ^& ‘USD’
AND r4.currency ^& ‘JPY’
AND r3.fromCur 5 r4.currency
AND r3.toCur 5 ‘USD’
AND r1.cname 5 r2.cname
AND r1.revenue * r3.rate . r2.expenses ;

This mediated query considers all potential conflicts between relations r1
and r2 when comparing values of “revenue” and “expenses” as reported in
the two different contexts. Moreover, the answers returned may be further
transformed so that they conform to the context of the receiver. Thus in our
example, the revenue of NTT will be reported as 9 600 000 as opposed to 1
000 000 . More specifically, the three-part query shown above can be
understood as follows. The first subquery takes care of tuples for which
revenue is reported in USD using scale-factor 1; in this case, there is no
conflict. The second subquery handles tuples for which revenue is reported
in JPY, implying a scale-factor of 1000 . Finally, the last subquery considers
the case where the currency is neither JPY nor USD, in which case only
currency conversion is needed. Conversion among different currencies is
aided by the ancillary data sources r3 (which provides currency conversion
rates) and r4 (which identifies the currency in use corresponding to a given
country). The mediated query MQ1, when executed, returns the “correct”
answer consisting only of the tuple ^‘NTT’ , 9 600 000 &.

2.2 Mediation of Queries on “Shared Views”

Although “multidatabase” queries may provide users with greater flexibil-
ity in formulating a query, they also require users to know what data are
present in which data sources and be sufficiently familiar with the at-
tributes in different schemas (so as to construct a query). An alternative
advocated in the literature is to allow views to be defined on the source
schemas and have users formulate queries based on the view instead. For
example, we might define a view on relations r1 and r2 , given by

CREATE VIEW v1 (cname, profit) AS
SELECT r1.cname, r1.revenue - r2.expenses
FROM r1, r2
WHERE r1.cname 5 r2.cname;

in which case, query Q1 can be equivalently formulated on the view v1 as

VQ1: SELECT cname, profit FROM v1
WHERE profit . 0;

While this view approach achieves essentially the same functionalities as
tightly coupled systems, notice that view definitions in our case are no
longer concerned with semantic heterogeneity and make no attempts at
identifying or resolving conflicts, since query mediation can be undertaken
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by the Context Mediator as before. Specifically, queries formulated on the
shared view can be easily rewritten to queries referencing sources directly,
which allows it to undergo further transformation by the Context Mediator
as before.

2.3 Mediation of Queries on Shared “Ontologies”

Yet another approach for achieving read-only integration is to define a
shared domain model (often called an ontology), which serves as a global
schema identifying all information relevant to a particular application
domain. However, unlike the traditional tight-coupling approach, data held
in the source databases is expressed as views over this global schema [Levy
et al. 1995b; Ullman 1997]. This means that queries formulated on the
ontology must be transformed to “equivalent” queries on actual data
sources.

It is important to note that current work in this direction has been
largely focused on designing algorithms for realizing query rewriting with
the goal of identifying the relevant information sources that must be
accessed to answer a query (see, for example, Levy et al. [1995a] and
Ullman [1997]). In all instances that we know of, it is assumed that no
semantic conflicts whatsoever exist among the disparate data sources. It
should be clear that the work reported here complements rather than
competes with this “new wave” integration strategy.

3. THE CONTEXT INTERCHANGE FRAMEWORK

McCarthy [1987] points out that statements about the world are never
always true or false: the truth or falsity of a statement can only be
understood with reference to a given context. This is formalized using
assertions of the form

c# : ist~c, s!

which suggests that the statement s is true in (“ist”) the context c, this
statement itself being asserted in an outer context c# .

McCarthy’s notion of “contexts” provides a useful framework for modeling
statements in heterogeneous databases which are seemingly in conflict
with one another: specifically, factual statements present in a data source
are not “universal” facts about the world, but are true relative to the
context associated with the source but not necessarily so in a different
context. Thus, if we assign the labels c1 and c2 to contexts associated with
sources 1 and 2 in Figure 1, we may now write

c# : ist(c1 ,r1 (“NTT” , 1 000 000 , “JPN” )).
c# : ist(c2 , r2 (“NTT” , 5 000 000 )).

where c# refers to the ubiquitous context associated with the integration
exercise. For simplicity, we will omit c# in the subsequent discussion, since
the context for performing this integration remains invariant.
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The Context Interchange framework constitutes a formal, logical specifi-
cation of the components of a Context Interchange system. This comprises
three components:

—The domain model is a collection of “rich” types, called semantic types,
which defines the application domain (e.g., medical diagnosis, financial
analysis) corresponding to the data sources which are to be integrated.

—The elevation axioms corresponding to each source identify the correspon-
dences between attributes in the source and semantic types in the
domain model. In addition, it codifies the integrity constraints pertaining
to the source; although the integrity constraints are not needed for
identifying sound transformations on user queries, they are useful for
simplifying the underlying representation and for producing queries
which are more optimal.

—The context axioms, corresponding to named contexts associated with
different sources or receivers, define alternative interpretations of the
semantic objects in different contexts. Every source or receiver is associ-
ated with exactly one context (though not necessarily unique, since
different sources or receivers may share the same context). We refer to
the collection of context axioms corresponding to a given context c as the
context theory for c.

The assignment of sources to contexts is modeled explicitly as part of the
Context Interchange framework via a source-to-context mapping m. Thus,
m~s! 5 c indicates that the context of source s is given by c. The functional
form is chosen over the usual predicate-form (i.e., m~s, c!) to highlight the
fact that every source can only be assigned exactly one context. By abusing
the notation slightly, we sometimes write m~r! 5 c if r is a relation in
source s. As we shall see later on, the context of receivers is modeled
explicitly as part of a query.

In the remaining subsections, we describe each of the above components
in turn. This is followed by a description of the logical inferences—called
abduction—for realizing query mediation. The Context Interchange frame-
work is constructed on a deductive and object-oriented data model (and
language) of the family of F(rame) logic [Kifer et al. 1995], which combines
both features of object-oriented and deductive data models. The syntax and
semantics of this language will be introduced informally throughout the
discussion, and we sometimes alternate between an F-logic and a predicate
calculus syntax to make the presentation more intuitive. This is no cause
for alarm, since it has been repeatedly shown that one syntactic form is
equivalent to the other (see, for instance, Abiteboul et al. [1993]). Notwith-
standing this, the adoption of an “object-oriented” syntax provides us with
greater flexibility in representing and reusing data semantics captured in
different contexts. This is instrumental in defining an integration infra-
structure that is scalable, extensible, and accessible [Goh et al. 1994]. This
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observation will be revisited in Section 4 where we compare our approach
to the integration strategy adopted in Carnot [Collet et al. 1991].

3.1 The Domain Model

We distinguish between two kinds of data objects in the COIN data model:
primitive objects, which are instances of primitive types, and semantic
objects which are instances of semantic types. Primitive types correspond to
data types (e.g., strings, integers, and reals) which are native to sources
and receivers. Semantic types, on the other hand, are complex types
introduced to support the underlying integration strategy. Specifically,
semantic objects may have properties, called modifiers, which serve as
annotations that make explicit the semantics of data in different contexts.
Every object is identifiable using a unique object-id (OID) and has a value
(not necessarily distinct). In the case of primitive objects, we do not
distinguish between the OID and its value. Semantic objects, on the other
hand, may have distinct values in different context. Examples of these will
be presented shortly.

A domain model is a collection of primitive types and semantic types
which provides a common type system for information exchange between
disparate systems. A (simplified) domain model corresponding to our moti-

(tuple actually stored in r1)

"NTT" 1,000,000 "JPN" "NTT" 9,600,000 "JPN"

(tuple in r1 seen in context c2)

CONTEXT
AXIOMS
FOR C2

DOMAIN MODEL
(simplified)

currency

semanticNumbersemanticString

companyName

CONTEXT c1

f_r1_country("NTT")

"JPY"

currency

"USD" CONTEXT c2

currencyType

f_r1_revenue("NTT")

currency

CONTEXT
AXIOMS
FOR 
C1

LEGEND

semantic-type

semantic-object

method
signature

subtype
relation

is-instance-of

method value

relation
countryName

moneyAmt

scaleFactor

f_r1_cname("NTT") ELEVATION AXIOMS

Fig. 3. A graphical illustration of the different components of a Context Interchange
framework.
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vational example in Section 2 can be seen in Figure 3. We use a different
symbol for types and object instances, and different arrow types to illus-
trate the disparate relationships between these. For example, double-shaft
arrows indicate “signatures” and identify what modifiers are defined for
each type, as well as the type of the object which can be assigned to the
(modifier) slot. The notation used should be self-explanatory from the
accompanying legend.

As in other “object-oriented” formalisms, types may be related in an
abstraction hierarchy where properties of a type are inherited. This inher-
itance can be structural or behavioral: the first refers to the inheritance of
the type structure, and the second, that of values assigned to instances of
those types. For example, semanticNumber , moneyAmt, and semantic-
String are all semantic types. Moreover, moneyAmt is a subtype of seman-
ticNumber and has modifiers currency and scaleFactor . If we were to
introduce a subtype of moneyAmt, say stockPrice , into this domain model,
then stockPrice will inherit the modifiers currency and scaleFactor
from moneyAmt by structural inheritance. If we had indicated that all
(object) instances of moneyAmt will be reported using a scaleFactor of 1,
this would be true of all instances of stockPrice as well by virtue of
behavioral inheritance (unless this value assignment is overridden).

The object labeled f_r1_revenue(“NTT”) is an example of a semantic
object, which is an instance of the semantic type moneyAmt (indicated by
the dashed arrow linking the two). The token f_r1_revenue(“NTT”) is
the unique OID and is invariant under all circumstances. Semantic objects
are “virtual” objects, since they are never physically materialized for query
processing, but exist merely for query mediation. As we will demonstrate in
the next section, this object is defined by applying a Skolem function on the
key-value of a tuple in the source. It is important to point out that a
semantic object may have different values in different “contexts.” Suppose
we introduce two contexts labeled as c1 and c2 which we associate with
sources and receiver as indicated in Figure 3. We may write

f_r1_revenue(“NTT”)[value(c1) 3 1000000].

f_r1_revenue(“NTT”)[value(c2) 3 9600000].

The above statements illustrate statements written in the COIN language
(COINL), which mirrors closely that of F-logic [Kifer et al. 1995]. The token
value(c1) is a parameterized method and is said to return the value
1000000 when invoked on the object f_r1_revenue(“NTT”) . The same
statements could have been written using a predicate calculus notation:

ist(c1, value(f_r1_revenue(“NTT”),1000000)).
ist(c2, value(f_r1_revenue(“NTT”),9600000)).

The choice of an object logic however allows certain features (e.g., inherit-
ance and overridding) to be represented more conveniently.

3.2 Elevation Axioms

Elevation axioms provide the means for mapping “values” present in
sources to “objects” which are meaningful with respect to a domain model.
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This is accomplished by identifying the semantic type corresponding to
each attribute in the export schema, and in allowing semantic objects to be
instantiated from values present in the source. In the graphical interface
which is planned for the existing prototype, this is simply accomplished by
scrolling through the domain model and “clicking” on the semantic type
that corresponds to a given attribute that is to be exported by the current
source.

Internally, this mapping of attributes to semantic types is formally
represented in two different sets of assertions. We present below the
abstract syntax of the language, which emphasizes the “logical” character
of our representation. A concrete syntax, a lá OQL, is being developed for
end-users and applications programmers to make the representation more
accessible.

The first group of axioms introduces a semantic object corresponding to
each attribute of a tuple in the source. For example, the statement

@x @y @z ?u s.t. u : moneyAmt 4 r1 ~x, y, z!

asserts that there exists some semantic object u of type moneyAmt corre-
sponding to each tuple in relation r1 . This statement can be rewritten into
the Horn clause [Lloyd 1987], where all variables are assumed to be
universally quantified:

f_r1_revenue ~x, y, z! : moneyAmt 4 r1 ~x, y, z!.

The existentially quantified variable u is replaced by the Skolem object
[Lloyd 1987] f_r1_revenue ~x, y, z!. Notice that the Skolem function
(f_r1_revenue ) is chosen such that it is guaranteed to be unique. In this
example, it turns out that the functional dependency cname 3 {rev-
enue,country} holds on r1 : this allows us to replace f_r1_revenue ~x,
y, z! by f_r1_revenue ~x! without any loss of generality. This follows
trivially from the fact that whenever we have f_r1_revenue ~x, y, z! and
f_r1_revenue ~x, y9, z9!, it must be that y 5 y9 and z 5 z9 (by virtue of
the functional dependency).

The second assertion is needed to provide the assignment of values to the
(Skolem) semantic objects created before. We may thus write

f_r1_revenue ~x![value ~c! 3 y] 4 r1 ~x, y, z!, m(r1, c).

Consider, for instance, the semantic object f_r1_revenue(“NTT”) shown
in Figure 3. This object is instantiated via the application of the first
assertion. The second assertion allows us to assign the value 1000000 to
this object in context c1 , which is the context associated with relation r1 .
The value of this semantic object may however be different in another
context, as in the case of c2 . The transformation on the values of semantic
objects between different contexts is addressed in the next subsection.

3.3 Context Axioms

Context axioms associated with a source or receiver provide for the articu-
lation of the data semantics which are often implicit in the given context.
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These axioms come in two parts. The first group of axioms defines the
semantics of data at the source or receiver in terms of values assigned to
modifiers corresponding to semantic objects. The second group of axioms
complements this declarative specification by introducing the “methods”
(i.e., conversion functions) that define how values of a given semantic object
are transformed between different contexts.

Axioms of the first type takes the form of a first-order statement which
make assignments to modifiers. Returning to our earlier example, the fact
that all moneyAmt in context c2 are reported in US Dollars using a
scale-factor of 1 is made explicit in the following axioms:

x : moneyAmt, y : semanticNumber £ y[value(c2) 3 1]

4 x [scaleFactor(c2) 3 y].

x : moneyAmt, y : currencyType £ y[value(c2) 3 “USD”]

4 x [currency(c2) 3 y].

In the above statements, the part preceding the symbol “£” constitutes
the predeclaration identifying the object type(s) (class) for which the axiom
is applicable. This is similar to the approach taken in Gulog [Dobbie and
Topor 1995]. By making explicit the types to which axioms are attached, we
are able to simulate nonmonotonic inheritance through the use of negation,
as in Abiteboul et al. [1993].

The semantics of data embedded in a given context may be arbitrarily
complex. In the case of context c1 , the currency of moneyAmt is determined
by the country-of-incorporation of the company which is being reported on.
This in turn determines the scale-factor of the amount reported; specifi-
cally, money amounts reported using “JPY” uses a scale-factor of 1000 ,
whereas all others are reported in 1’s. The corresponding axioms for these
are shown below:

x :moneyAmt, y :currencyType £ y[value(c1) 3 v] 4
x[currency(c1) 3 y], x 5 f_r1_revenue ~u!,

r1 ~u, 2, w!, r4 ~w, v!.

x :moneyAmt, y :semanticNumber £ y [value(c1) 3 1000] 4
x[scaleFactor(c1) 3 y; currency(c1) 3 z],

z[value(c1) 3 v], v 5 “JPY”.

x :moneyAmt, y :semanticNumber £ y [value(c1) 3 1] 4
x[scaleFactor(c1) 3 y; currency(c1) 3 z],

z[value(c1) 3 v], v Þ “JPY”.

Following Prolog’s convention, the token “_” is used to denote an “anony-
mous” variable. In the first axiom above, r4 is assumed to be in the same
context as r1 and is assumed to constitute an ancillary data source for
defining part of the context (in this case, the currency used in reporting
moneyAmt). Bear in mind also that variables are local to a clause; thus,
variables having the same name in different clauses have no relation to one
another.

The preceding declarations are not yet sufficient for resolving conflicting
interpretations of data present in disparate contexts, since we have yet to
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define how values of a (semantic) object in one context are to be reported in
a different context with different assumptions (i.e., modifier values). This is
accomplished in the Context Interchange framework via the introduction of
conversion functions (methods) which form part of the context axioms. The
conversion functions define, for each modifier, how representations of an
object of a given type may be transformed to comply with assumptions in
the local context. For example, scale-factor conversions in context c1 can be
defined by multiplying a given value with the appropriate ratio as shown
below:

x :moneyAmt £

x[cvt(scaleFactor,c1)@ c, u 3 v] 4
x[scaleFactor(c1) 3 _[value(c1) 3 f]],
x[scaleFactor( c) 3 _[value(c1) 3 g]],

v 5 u * g/f.

In the “antecedent” of the statement above, the first literal returns the
scale-factor of x in context c1 . In contrast, the second literal returns the
scale-factor of x in some parameterized context c. c and c1 are, respec-
tively, the source and target context for the tranformation at hand. The
objects returned by modifiers (in this case, scaleFactor(c1) and scale-

Factor( c) ) are semantic objects and need to be dereferenced to the current
context before they can be operated upon: this is achieved by invoking the
method value(c1) on them. Notice that the same conversion function can
be introduced in context c2 ; the only change required is the systematic
replacement of all references to c1 by c2 .

The conversion functions defined for semantic objects are invoked when
the semantic objects are exchanged between different contexts. For exam-
ple, the value of the semantic object f_r1_revenue(“NTT”) in context c2
is given by

f_r1_revenue(“NTT”)[value(c2) 3 v] 4
f_r1_revenue(“NTT”)[cvt(c2) 3 v].

The method cvt(c2) can in turn be rewritten as a series of invocations on
the conversion function defined on each modifier pertaining to the semantic
type. Thus, in the case of moneyAmt, we would have

f_r1_revenue(“NTT”)[cvt(c2) 3 w] 4
f_r1_revenue(“NTT”)[value(c1) 3 u],

f_r1_revenue(“NTT”)[cvt(currency,c2)@c1, u 3 v],

f_r1_revenue(“NTT”)[cvt(scaleFactor,c2)@c1, v 3 w].

Hence, if the conversion function for currency returns the value 9600 , this
will be rewritten to 9600000 by the scale-factor conversion function and
returned as the value of the semantic object f_r1_revenue(“NTT”) in
context c2 .

In the same way whereby r4 is used in the assignment of values to
modifiers, ancillary data sources may be used for defining appropriate
conversion functions. For instance, currency conversion in context c2 is
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supported by the relation r3 , which provides the exchange rate between
two different currencies. In general, the use of ancillary data sources in
context axioms will lead to the introduction of additional table lookups in
the mediated query, as we have shown earlier in Section 2.

3.4 Query Mediation as Abductive Inferences

The goal of the Context Interchange framework is to provide a formal,
logical basis that allows for the automatic mediation of queries such as
those described in Section 2. The logical inferences which we have adopted
for this purpose can be characterized as abduction [Kakas et al. 1993]: in
the simplest case, this takes the form

From observing A and the axiom B 3 A
Infer B as a possible “explanation” of A.

Abductive logic programming (ALP) [Kakas et al. 1993] is an extension of
logic programming [Lloyd 1987] to support abductive reasoning. Specifi-
cally, an abductive framework [Eshghi and Kowalski 1989] is a triple ^7,
!, (& where 7 is a theory, ( is a set of integrity constraints, and ! is a set
of predicate symbols, called abducible predicates. Given an abductive

framework ^7, !, (& and a sentence ?XW q~XW ! (the observation), the abduc-
tive task can be characterized as the problem of finding a substitution u and
a set of abducibles D, called the abductive explanation for the given
observation, such that

(1) 7 ø D ?5 @~q~XW !u!,

(2) 7 ø D satisfies (, and

(3) D has some properties that make it “interesting.”

Requirement (1) states that D, together with 7, must be capable of

providing an explanation for the observation @~q~XW !u!. The prefix “@”
suggests that all free variables after the substitution are assumed to be
universally quantified. The consistency requirement in (2) distinguishes
abductive explanations from inductive generalizations. Finally, in the
characterization of D in (3), “interesting” means primarily that literals in D
are atoms formed from abducible predicates: where there is no ambiguity,
we refer to these atoms also as abducibles. In most instances, we would like
D to also be minimal or nonredundant.

The Context Interchange framework is mapped to an abductive frame-
work ^7, !, (& in a straightforward manner. Specifically, the domain
model axioms, the elevation axioms, and the context axioms are rewritten
to normal Horn clauses where nonmonotonic inheritance is simulated
through the use of negation. The procedure and semantics for this transfor-
mation have been described in Abiteboul et al. [1993]. The resulting set of
clauses, together with a handful of generic axioms, defines the theory 7 for
the abductive framework. The integrity constraints in ( consist of all the
integrity constraints defined on the sources complemented with Clark’s
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Free Equality Axioms1 [Clark 1978]. Finally, the set of abducibles !
consists of all extensional predicates (relation names exported by sources)
and references to externally stored procedures (referenced by some conver-
sion functions).

As we have noted in Section 2, queries in a Context Interchange system
are formulated under the assumption that there are no conflicts between
sources and/or the receiver. Given an SQL query, context mediation is
bootstrapped by tranforming this user query into an equivalent query in
the internal COINL representation. For example, the query Q1 (in Section
2) will be rewritten to the following form:

Q1*: 4 ans~x, y!.
ans~x, y! 4 r1 ~x, y, 2!, r2 ~x, z!, y . z.

The predicate ans is introduced so that only those attributes which are
needed are projected as part of the answer. This translation is obviously a
trivial exercise, since both COINL and relational query languages are
variants of predicate calculus.

The preceding query however continues to make reference to primitive
objects and (extensional) relations defined on them. To allow us to reason
with the different representations built into semantic objects, we introduce
two further artifacts which facilitates the systematic rewriting of a query to
a form which the context mediator can work with.

—For every extensional relation r , we introduce a corresponding semantic
relation r# which is isomorphic to the original relation, with each primi-
tive object in the extensional relation being replaced by its semantic
object counterpart. For example, the semantic relation for r# 1 is defined
via the axiom

r# 1~f 2r1 2cname~x!, f 2r1 2revenue ~x!, f 2r1 2country ~x!! 4 r1 ~x, 2, 2!.

A sample tuple of this semantic relation can be seen in Figure 3.

—To take into account the fact that the same semantic object may have
different representations in different contexts, we enlarge the notion of
classical “relational” comparison operators and insist that such compari-
sons are only meaningful when they are performed with respect to a
given context. Formally, if L is some element of the set
{5,Þ,#,$,,,.,. . .} and x, y are primitive objects or semantic objects (not
necessarily of the same semantic type), then we say that

x L
c

y iff ~x @value ~c! 3 u# and y @value ~c! 3 v# and u L v!

(In the case where both x and y are primitive objects, semantic compari-
son degenerates to normal relational operations, since the value of a

1These consist of the axioms X 5 X (reflexivity), X 5 Z 4 X 5 Y ∧ Y 5 Z (transitivity), and
inequality axioms of the type a Þ b, b Þ c for any two non-Skolem terms which do not unify.
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primitive object is given by its OID.) The intuition underlying this
fabrication is best grasped through an example: in the case of
f_r1_revenue(“NTT”) , we know that

f 2r1 2revenue ~“NTT” ! @value ~c1 ! 3 1000000 #.

Thus, the statement f_r1_revenue(“NTT”) ,
c

5000000 is true if
c 5 c1 but not if c 5 c2 (since f_r1_revenue(“NTT”)[value(c2) 3
9600000] ).

Using the above definitions, the context mediator can rewrite the query Q1*

shown earlier to the following:
ans~u, v! 4 r# 1~x, y, 2!, r# 2~w, z!, x 5

c2
w, y

c2
. z, x [value(c2) 3 u] ,

y[value(c2) 3 v] .

This is obtained by systematic renaming of each extensional predicate (r )
to its semantic counterpart (r# ), by replacing all comparisons (including
implicit “joins”) with semantic comparisons, and making sure that at-
tributes which are to be projected in a query correspond to the values of
semantic objects in the context associated with the query.

The abductive answer corresponding to the above query can be obtained
via backward chaining, using a procedure not unlike the standard SLD-
resolution procedure [Eshghi and Kowalski 1989]. We present the intuition
of this procedure below by visiting briefly the sequence of reasoning in the
example query. A formal description of this procedure can be found in
Bressan et al. [1997b].

Starting from the query above and resolving each literal with the theory
7 in a depth-first manner, we would have obtained the following:

4 r1 ~u0, v0, 2!, r# 2~w, z!, f 2r1 2cname~u0! 5
c2

w, f 2r1 2revenue ~u0!
c2
. z,

f 2r1 2cname~u0! @value ~c2 ! 3 u#, f 2r1 2revenue ~u0! @value ~c2 ! 3 v#.

The subgoal r1 ~u0, v0, 2! cannot be further evaluated and will be abducted
at this point, yielding the following sequence:

4 r# 2~w, z!, f 2r1 2cname~u0! 5
c2

w, f 2r1 2revenue ~u0!
c2
. z,

f 2r1 2cname~u0! @value ~c2 ! 3 u#, f 2r1 2revenue ~u0! @value ~c2 ! 3 v#.
4 r2 ~u9, v9!, f 2r1 2cname~u0! 5

c2
f 2r2 2cname~u9!,

f 2r1 2revenue ~u0!
c2
. f 2r2 2expenses ~u9!,

f 2r1 2cname~u0! @value ~c2 ! 3 u#, f 2r1 2revenue ~u0! @value ~c2 ! 3 v#.

Again, r2 ~u9, v9! is abducted to yield

4 f 2r1 2cname~u0! 5
c2

f 2r2 2cname~u9!,
f 2r1 2revenue ~u0!

c2
. f 2r2 2expenses ~u9!,

f 2r1 2cname~u0! @value ~c2 ! 3 u#, f 2r1 2revenue ~u0! @value ~c2 ! 3 v#.

Since companyName has no modifiers, there is no conversion function
defined on instances of companyName, so the value of f_r1_cname ~u0! does
not vary across any context. Hence, the subgoal f_r1_cname ~u0! 5

c2

f_r2_cname ~u9! can be reduced to just u0 5 u9 which unifies the variables
u and u9, reducing the goal further to
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4 f 2r1 2revenue ~u0!
c2
. f 2r2 2expenses ~u0!,

f 2r1 2cname~u0! @value ~c2 ! 3 u#, f 2r1 2revenue ~u0! @value ~c2 ! 3 v#.

This process goes on until this goal list has been reduced to the empty
clause. Upon backtracking, alternative abductive answers can be obtained.
In this example, we obtain the following abductive answers in direct
correspondance to the mediated query MQ1 shown earlier:

D1 5 { r1( u, v, 2), r2( u, v9), r4( u,“USD”), v . v9}

D2 5 { r1( u, v0, 2), r2( u, v9), r4( u,“JPY”), r3(“JPY”,“USD”, r) ,
v 5 v0 * r * 1000 , v . v9}

D3 5 { r1( u, v0, 2), r2( u, v9), r4( u, y), y Þ “USD”, y Þ “JPY” ,
r3( y,“USD”, r), v 5 v0 * r, v . v9}

The query-rewriting technique described above may also be understood as a
form of partial evaluation, in which a high-level specification is trans-
formed into a lower-level program which can be executed more efficiently.
In this context, the context mediator plays the role of a meta-interpreter
that evaluates part of the query (identifying potential conflicts and meth-
ods for their resolution in consultation with the logic theory 7), while
delaying other parts of the query that involve access to extensional data-
bases and evaluable predicates. This compilation can be performed online
or offline, i.e., at the time a query is being submitted, or in the form of
precompiled view definitions that are regularly queried by users and other
client applications.

4. COMPARISON WITH EXISTING APPROACHES

In an earlier report [Goh et al. 1994], we have made detailed comments on
the many features that the Context Interchange approach has over tradi-
tional loose- and tight-coupling approaches. In summary, although tightly
coupled systems provide better support for data access to heterogeneous
systems (compared to loosely coupled systems), they do not scale-up effec-
tively given the complexity involved in constructing a shared schema for a
large number of systems and are generally unresponsive to changes for the
same reason. Loosely coupled systems, on the other hand, require little
central administration but are equally nonviable, since they require users
to have intimate knowledge of the data sources being accessed; this
assumption is generally nontenable when the number of systems involved
is large and when changes are frequent.2 The Context Interchange ap-
proach provides a novel middle ground between the two: it allows knowl-
edge of data semantics to be independently captured in sources and
receivers (in the form of context theories), while allowing a specialized

2We have drawn a sharp distinction between the two here to provide a contrast of their
relative features. In practice, one is most likely to encounter a hybrid of the two strategies. It
should however be noted that the two strategies are incongruent in their outlook and are not
able to easily take advantage of each other’s resources. For instance, data semantics encapsu-
lated in a shared schema cannot be easily extracted by a user to assist in formulating a query
which seeks to reference the source schemas directly.
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mediator (the Context Mediator) to undertake the role of detecting and
reconciling potential conflicts at the time a query is submitted.

At a cursory level, the Context Interchange approach may appear similar
to many contemporary integration approaches. However, we posit that the
similarities are superficial, and that our approach represents a significant
departure from these strategies. Given the proliferation of system proto-
types, it is not practical to compare our approach with each of these. The
following is a sampling of contemporary systems which are representative
of various alternative integration approaches.

A number of contemporary systems (e.g., Pegasus [Ahmed et al. 1991],
the ECRC Multidatabase Project [Jonker and Schütz 1995], SIMS [Arens
and Knoblock 1992], and DISCO [Tomasic et al. 1995]) have attempted to
rejuvenate the loose- or tight-coupling approach through the adoption of an
object-oriented formalism. For loosely coupled systems, this has led to more
expressive data transformation (e.g., O*SQL [Litwin 1992]); in the case of
tightly coupled systems, this helps to mitigate the effects of complexity in
schema creation and change management through the use of abstraction
and encapsulation mechanisms. Although the Context Interchange strategy
embraces “object orientation” for the same reasons, it differs by not
requiring pairwise reconciliation of semantic conflicts to be incorporated as
part of the shared schema. For instance, our approach does not require the
domain model to be updated each time a new source is added; this is unlike
tightly coupled systems where the shared schema needs to be updated
by-hand each time such an event occurs, even when conflicts introduced by
the new source are identical to those which are already present in existing
sources. Yet another difference is that although a deductive object-oriented
formalism is also used in the Context Interchange approach, “semantic
objects” in our case exist only conceptually and are never actually materi-
alized during query evaluation. Thus, unlike some other systems (e.g., the
ECRC prototype), we do not require an intermediary “object store” where
objects are instantiated before they can be processed. In our implementa-
tion, both user queries and their mediated counterpart are relational. The
mediated query can therefore be executed by a classical relational DBMS
without the need to reinvent a query-processing subsystem.

In the Carnot system [Collet et al. 1991], semantic interoperability is
accomplished by writing articulation axioms which translate “statements”
which are true in individual sources to statements which are meaningful in
the Cyc knowledge base [Lenat and Guha 1989]. A similar approach is
adopted in Faquhar et al. [1995], where it is suggested that domain-specific
ontologies [Gruber 1991], which may provide additional leverage by allow-
ing the ontologies to be shared and reused, can be used in place of Cyc.
While we like the explicit treatment of contexts in these efforts and share
their concern for sustaining an infrastructure for data integration, our
realization of these differs in several important ways. First, our domain
model is a much more impoverished collection of rich types compared to the
richness of the Cyc knowledge base. Simplicity is a feature here because
the construction of a rich and complex shared model is laborious and error
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prone, not to mention that it is almost impossible to maintain. Second, the
translation of sentences from one context to another is embedded in axioms
present in individual context theories, and are not part of the domain
model. This means that there is greater scope for different users to
introduce conversion functions which are most appropriate for their pur-
poses without requiring these differences to be accounted for globally.
Finally, semantics of data is represented in an “object-centric” manner as
opposed to a “sentential” representation. For example, to relate two state-
ments (s and s9) in different distinct contexts c and c9, a lifting axiom of
the form

ist~c, s! N ist~c9, s9!

will have to be introduced in Cyc. In the Context Interchange approach, we
have opted for a “type-based” representation where conversion functions
are attached to types in different contexts. This mechanism allows for
greater sharing and reuse of semantic encoding. For example, the same
type may appear many times in different predicates (e.g., consider the type
moneyAmt in a financial application). Rather than writing a lifting axiom
for each predicate that redundantly describes how different reporting
currencies are resolved, we can simply associate the conversion function
with the type moneyAmt.

Finally, we remark that the TSIMMIS [Papakonstantinou et al. 1995;
Quass et al. 1995] approach stems from the premise that information
integration could not, and should not, be fully automated. With this in
mind, TSIMMIS opted in favor of providing both a framework and a
collection of tools to assist humans in their information processing and
integration activities. This motivated the invention of a “lightweight” object
model which is intended to be self-describing. For practical purposes, this
translates to the strategy of making sure that attribute labels are as
descriptive as possible and opting for free-text descriptions (“man-pages”)
which provide elaborations on the semantics of information encapsulated in
each object. We concur that this approach may be effective when the data
sources are ill structured and when consensus on a shared vocabulary
cannot be achieved. However, there are also many other situations (e.g.,
where data sources are relatively well structured and where some consen-
sus can be reached) where human intervention is not appropriate or
necessary: this distinction is primarily responsible for the different ap-
proaches taken in TSIMMIS and our strategy.

5. CONCLUSION

Although there had been previous attempts at formalizing the Context
Interchange strategy (see, for instance, Sciore et al. [1994]), a tight integra-
tion of the representational and reasoning formalisms has been consis-
tently lacking. This article has filled this gap by introducing a well-founded
logical framework for capturing context knowledge and in demonstrating
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that query mediation can be formally understood with reference to current
work in abductive logic programming. The advancements made in this
theoretical frontier have been instrumental in the development of a proto-
type which provides for the integration of data from disparate sources
accessible on the Internet. The architecture and features of this prototype
have been reported in Bressan et al. [1997a] and will not be repeated here
due to space constraints.

The adoption of a declarative encoding of data semantics brings about
other side benefits, chief among which is the ability to query directly the
semantics of data which are implicit in different systems. Consider, for
instance, the query formulated on the motivational example introduced
earlier in the article, that is based on a superset of SQL:3

Q2: SELECT r1.cname, r1.revenue.scaleFactor IN c1,
r1.revenue.scaleFactor IN c2 FROM r1

WHERE r1.revenue.scaleFactor IN c1
^& r1.revenue.scaleFactor IN c2;

Intuitively, this query asks for companies for which scale-factors for
reporting “revenue” in r1 (in context c1) differ from that which the user
assumes (in context c2). We refer to queries such as Q2 as knowledge-level
queries, as opposed to data-level queries which are enquires on factual data
present in data sources. Knowledge-level queries have received little atten-
tion in the database literature and to our knowledge have not been
addressed by the data integration community. This is a significant gap in
the literature given that heterogeneity in disparate data sources arises
primarily from incompatible assumptions about how data are interpreted.
Our ability to integrate access to both data and semantics can be exploited
by users to gain insights into differences among particular systems; for
example, we may want to know “Do sources A and B report a piece of data
differently? If so, how?” Alternatively, this facility may be exploited by a
query optimizer which may want to identify sites with minimal conflicting
interpretations in identifying a query plan which requires less costly data
transformations.

Interestingly, knowledge-level queries can be answered using the exact
same inference mechanism for mediating data-level queries. Hence, sub-
mitting query Q2 to the Context Mediator will yield the result

MQ2: SELECT r1.cname, 1000, 1 FROM r1, r4
WHERE r1.country 5 r4.country AND r4.currency 5 ‘JPY’;

which indicates that the answer consists of companies for which the
reporting currency attribute is ‘JPY’ , in which case the scale-factors in
context c1 and c2 are 1000 and 1 respectively. If desired, the mediated
query MQ2 can be evaluated on the extensional data set to return an
answer grounded in the extensional data set. Hence, if MQ2 is evaluated on

3Sciore et al. [1992] have described a similar (but not identical) extension of SQL in which
context is treated as a “first-class object.” We are not concerned with the exact syntax of such
a language here; the issue at hand is how we might support the underlying inferences needed
to answer such queries.
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the data set shown in Figure 1, we would obtain the singleton answer
^‘NTT’ , 1000 , 1&.

Yet another feature of Context Interchange is that answers to queries can
be both intensional and extensional. Extensional answers correspond to
fact sets which one normally expects of a database retrieval. Intensional
answers, on the other hand, provide only a characterization of the exten-
sional answers without actually retrieving data from the data sources. In
the preceding example, MQ2 can in fact be understood as an intensional
answer for Q2, while the tuple obtained by the evaluation of MQ2 consti-
tutes the extensional answer for Q2.

As seen from the above example, intensional answers are grounded in
extensional predicates (i.e., names of relations), evaluable predicates (e.g.,
arithmetic operators or “relational” operators), and external functions
which can be directly evaluated through system calls. The intensional
answer is thus no different from a query which can normally be evaluated
on a conventional query subsystem of a DBMS. Query answering in a
Context Interchange system is thus a two-step process: an intensional
answer is first returned in response to a user query; this can then be
executed on a conventional query subsystem to obtain the extensional
answer.

The intermediary intensional answer serves a number of purposes [Imi-
elinski 1987]. Conceptually, it constitutes the mediated query correspond-
ing to a user query and can be used to confirm the user’s understanding of
what the query actually entails. More often than not, the intensional
answer can be more informative and easier to comprehend compared to the
extensional answer it derives. (For example, the intensional answer MQ2
actually conveys more information than merely the extensional answer
comprising a single tuple.) From an operational standpoint, the computa-
tion of extensional answers is likely to be many orders of magnitude more
expensive compared to the evaluation of the corresponding intensional
answer. It therefore makes good sense not to continue with query evalua-
tion if the intensional answer satisfies the user. From a practical stand-
point, this two-stage process allows us to separate query mediation from
query optimization and execution. As we have illustrated in this article,
query mediation is driven by logical inferences which do not bond well with
(predominantly cost-based) optimization techniques that have been devel-
oped [Mumick and Pirahesh 1994; Seshadri et al. 1996]. The advantage of
keeping the two tasks apart is thus not merely a conceptual convenience,
but allows us to take advantage of mature techniques for query optimiza-
tion in determining how best a query can be evaluated.

To the best of our knowledge, the application of abductive reasoning to
“database problems” has been confined to the view-update problem [Kakas
and Mancarella 1990]. Our use of abduction for query rewriting represents
a potentially interesting avenue which warrants further investigation. For
example, consistency checking performed in the abduction procedure allows
a mediated query to be pruned to arrive at intensional answers which are
more comprehensible as well as queries which are more efficient. This
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bears some similarity to techniques developed for semantic query optimiza-
tion [Chakravarthy et al. 1990] and appears to be useful for certain types of
optimization problems.
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